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Abstract1

The ultimate goal of research on evolution of cooperation could be conceived as finding a2

method for stabilizing strategies that always cooperate, that never deviate from cooperation,3

that never exploit, and never retaliate, because all such activities are inherently problematic.4

The hope of achieving this cooperative utopia seems unjustified, especially in the context of5

direct reciprocity, which relies on the principle that cooperative partner strategies succeed in6

defending themselves by using moderate retaliation. Here we propose a dynamic that goes7

a certain way toward achieving the desirable goal. In the ground state, the population con-8

sists of individuals that use always-cooperate (ALLC). Occasionally defectors, in the form of9

always-defect (ALLD), invade the population. Their presence triggers a mutation from ALLC10

to another strategy, X, with the aim to avert the take-over of defectors. In absence of X, ALLD11

dominates ALLC, but in the presence of X, the invasion attempt might fail and subsequently the12

ALLC ground state can be restored. We study this mutation-selection process in finite and infi-13

nite populations. We identify the properties of the ideal rescue strategy. We derive an optimum14

mutation rate which maximally stabilizes ALLC.15
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Introduction16

Cooperation is a central theme in the theory of evolution1–5. Cooperators are individuals who17

pay costs to benefit others. Defectors, in contrast, pay no costs and distribute no benefits.18

Mechanisms for the evolution of cooperation are interactions structures that allow natural se-19

lection to favor cooperation over defection2,3,6–12. Here we focus on the mechanism of direct20

reciprocity1,13–19. There are repeated encounters between the same two individuals. If I coop-21

erate now I might induce your cooperation later. If I defect now I might evoke your retaliation.22

Therefore in an iterated Prisoner’s dilemma defection is no longer the only Nash equilibrium20.23

Much of the research within direct reciprocity deals with the question of how to play the24

repeated game. The search is for strategies that do well. Recently, strategies have been separated25

into two large categories: rivals and partners18,21. Rivals always want a higher payoff than their26

co-player. They insist on winning. Examples of rivals are always defect (ALLD) or so called27

extortionists22. Partners accept that in some situations their payoff will be lower than that of the28

co-player, but they incentivize their co-players to cooperate with them: when playing against a29

partner strategy you maximize your own payoff when you fully cooperate. Partners are focused30

on sharing. Examples of partners are generous tit-for-tat23 and win-stay, lose-shift24. Broadly31

speaking, rivals destroy but partners facilitate evolution of cooperation.32

When it comes to human behavior, an inherent problem of direct reciprocity is the need to33

retaliate against defection. A genuinely good person may be reluctant do to so. But if everyone34

uses unconditional cooperation then the mechanism of direct reciprocity fails to operate. In35

this paper we explore the question if it is possible to stabilize a population of always cooper-36

ate (ALLC) individuals. We explore the following setting. In the ground state, the population37

consists only of ALLC players. Occasionally, the ground state is challenged by invasion of38

defectors. For simplicity but without losing generality, we assume the challengers use the no-39

torious ALLD strategy. When the invasion occurs a “danger signal” triggers the mutation from40

ALLC to a rescue strategy, X. The hope is that in the presence of X the invasion attempt will41

fail and the ground state will be restored.42

In the following, we study both stochastic and deterministic evolutionary dynamics of the43

resulting mutation selection system. First, we study the stochastic evolutionary process by con-44

sidering a finite population model. In this model, ALLC individuals probabilistically generate45

a mutant offspring X only when the number of defectors surpasses a certain threshold in the46
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population. Our goal is to compute the likelihood that the ALLC population is restored once a47

single ALLD mutant attempts to invade it. We examine the effect of the conditional mutation48

probability, µ, on the restoration probability and characterize properties of the best rescue strat-49

egy, X. Later, we study deterministic evolutionary dynamics by considering infinite population50

size. Here we find an optimal mutation rate, µ1, for which ALLC achieves maximal frequency51

in stable coexistence with X and ALLD.52

The repeated donation game and strategies53

Description of the game. The donation game involves two-players, each having two possible54

actions, cooperation, C, or defection, D. When an individual cooperates, they incur a cost c55

to provide a benefit b to the co-player. We have b > c > 0. When an individual defects,56

they provide no benefit and thereby incur no cost. The donation game is a special case of the57

Prisoner’s Dilemma. For the four possible outcomes of the game, the payoffs for the row player58

are given by the payoff matrix59

C D( )
C b− c −c

D b 0
(1)

In the repeated donation game, players continue with probability δ after each round. We60

focus on the limit δ → 1 which represents the infinitely repeated game. We assume that players61

make rare implementation errors: they sometimes play D when they intend to play C and vice-62

versa15.63

64

Strategies. A strategy is defined by the probability to cooperate in the first round and by the65

probabilities to cooperate after every sequence of past play. Here, we study strategies that66

base their decision on the outcome of the previous round, which are the so-called memory-167

strategies15. Since we consider the infinitely repeated game with implementation errors, we can68

ignore the initial move15,25.69

Therefore, a memory-1 strategy is defined by four parameters, (pCC, pCD, pDC, pDD), which70
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denote the probabilities to cooperate if the outcome of the previous round was CC,CD,DC or71

DD, respectively. In this notation, the first letter (C or D) denotes the move of the focal player,72

while the second letter (C or D) denotes the move of the other player. A strategy is called73

deterministic if all probabilities are binary variables taking the values 0 or 1. There are 16 de-74

terministic memory-1 strategies. They include ALLD (0, 0, 0, 0), GRIM (1, 0, 0, 0), Win-stay,75

lose-shift (1, 0, 0, 1), TFT (1, 0, 1, 0), Firm-but-fair (FBF) (1, 0, 1, 1), which is also known as76

Forgiver, and ALLC (1, 1, 1, 1).77

78

Computing expected payoffs. The first step in calculating expected payoff per-round for the79

two players is to determine how often the four states—CC, CD, DC, and DD—occur based on80

the strategies that the players adopt. Earlier work25,26 details the method for computing the sta-81

tionary distribution of the four states, provided both players employ memory-1 strategies. Due82

to rare implementation errors, there is a unique stationary distribution, (vCC, vCD, vDC, vDD)
25,26.83

The expected payoff of the focal player is then given by π1 = vCC(b− c)+vCD(−c)+vDC(b)+84

vDD(0). We use π(si, sj) to denote the payoff of the player who adopts the strategy si against85

her co-player who adopts sj .86

The payoffs when both players employ deterministic memory-1 strategies is given in Table87

1. The effect of implementation error is noticeable when one observes the payoff that the strat-88

egy TFT (S10 in Table 1) obtains against itself. In a game with no errors, two TFT players, who89

start with cooperation, continue to cooperate in every round and receive an expected per-round90

payoff of b− c. However, with errors, one can derive that two TFT players visit each of the four91

states equally often: their stationary distribution is (0.25, 0.25, 0.25, 0.25). As a result, they re-92

ceive an expected payoff of (b− c)/2. Therefore, in the presence of noise, TFT fails to achieve93

the payoff for full cooperation. Consequently, generous tit-for-tat (GTFT) (1, q, 1, q) for some94

q > 0 is a much better strategy, because it has the ability to forgive15.95

96

Evolutionary dynamics in a finite population97

Consider a finite, well-mixed population of size N , whose individuals interact in a repeated98

donation game. We study evolutionary dynamics in a birth-death process27 with mutation. In99

the beginning, the population is only composed of individuals who adopt ALLC. We call this100
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the ‘ground state’ of the population. We challenge the ground state by switching the strategy101

of one individual to ALLD. We are interested in studying the evolutionary dynamics and the102

final state of the process that is initiated with this alteration. Below, we describe in detail the103

evolutionary process that unfolds.104

105

Description of the birth-death process with conditional mutations. At each step of the birth-106

death process, first an individual is chosen randomly from the population, with probability pro-107

portional to its current fitness, to produce an offspring. In the second step, a second individual,108

selected uniformly at random to die. Thereby, the population size remains at a constant size.109

During the birth event, ALLD individuals reproduce without mutation; they always produce110

ALLD offspring. However, when an ALLC individual reproduces, the offspring is ALLC with111

probability 1 − µe, but adopts strategy X with probability µe. Individuals who adopt X repro-112

duce without mutation. We allow X to be any memory-1 strategy. Later we also consider back113

mutation from X to ALLC.114

At any point in time, the state of the population is specified by three numbers (NC , ND, NX),115

denoting the abundance of ALLC players, ALLD players, and X players. The total population116

size, N = NC +ND +NX , is constant.117

The mutation probability from ALLC to X, µe depends on the number of ALLD players in118

the population, ND. In particular, we consider119

µe =

 µ if ND ≥ k

0 if ND < k.
(2)

Thus, ALLC produces mutants only if ND is greater or equal to k. We consider k ≥ 1 in our120

analysis. ALLC does not mutate if ND = 0. This threshold mutation rate represents a specific121

choice. Later we consider a mutation rate that is a linear function of ND.122

We illustrate the evolutionary process in Fig. 1. For µ = 0, the stochastic process reduces123

to the fixation dynamics of an ALLD mutant in an ALLC population (see Fig. 1A). In this case,124

the population is always composed of at most two strategies, ALLC and ALLD, and there are125

two absorbing states, (N, 0, 0) and (0, N, 0). For µ > 0, the population is composed of at most126

three strategies, ALLC, ALLD and X. Since mutations only occur when ALLD is present in127

the population, the population stabilizes once it returns to the ground state, (N, 0, 0). Likewise,128
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since reproductions by ALLD and X are never subject to mutations, the population also stabi-129

lizes when it reaches the homogenous states (0, N, 0) or (0, 0, N). Thus, there are three final130

states of the stochastic process that begins from (N−1, 1, 0): the ground state, (N, 0, 0), the131

state where everyone adopts ALLD, (0, N, 0), and the state where everyone adopts X, (0, 0, N)132

(see Fig. 1B).133

134

Fitness of strategies in a population. In the birth-death process, individuals are selected for135

reproduction with probability proportional to their current fitness. We assume that fitness is a136

positive quantity that monotonically increases with average payoff. We compute the average137

payoff of a strategy i (denoted Πi), by weighing its expected per-round payoffs against other138

strategies, π(i, ·), with the probability of meeting them in the well-mixed population. For the139

population state N := (NC , ND, NX), we obtain the payoff values140

ΠC (N) = (b− c)

(
max{NC−1, 0}

N − 1

)
− c

(
ND

N − 1

)
+ π(C,X)

(
NX

N − 1

)

ΠD (N) = b

(
NC

N − 1

)
+ π(D,X)

(
NX

N − 1

)

ΠX (N) = π(X,C)

(
NC

N − 1

)
+ π(X,D)

(
ND

N − 1

)
+ π(X,X)

(
max{NX−1, 0}

N − 1

)
(3)

We assume that an individual’s fitness is an exponential function of its average expected pay-141

off28. That is, an individual with strategy i in the population state N has the fitness Fi(N) =142

eβΠi(N). Here β is the intensity of selection. We consider β = 1 from here onwards.143

144

Computing absorption probability into final states. When mutations are absent (µ = 0), the145

evolutionary process is a discrete-time Markov chain in the state space146

Sµ=0 = {(NC , N−NC , 0) | NC ∈ {0, 1, .., N}}. (4)

The probability that the process ends in state (0, N, 0), which means all players have adopted147
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ALLD, after beginning from state (N−1, 1, 0) is given by27
148

ρD =
1

1 +
N−1∑
k=1

k∏
j=1

e−c− b
N−1

. (5)

With the complementary probability, ρC := 1− ρD, the process ends in the other final state,149

(N, 0, 0) wherein everyone adopts ALLC.150

When mutations are possible, µ > 0, the Markov process covers the bigger state space151

S :=
{
(NC , ND, NX) ∈ {0, 1, 2, ..., N}3

∣∣∣ NC +ND +NX = N
}
. (6)

In addition to (N, 0, 0) and (0, N, 0), the state in which everyone adopts X, (0, 0, N), is also152

an absorbing state. We define ρC , ρD and ρX as the probabilities that the process finishes in153

(N, 0, 0),(0, N, 0), and (0, 0, N), respectively after it begins from state (N−1, 1, 0).154

To explicitly compute these absorption probabilities, we first derive the transition matrix T155

associated with the Markov process (see Eq. (13) in Methods). Then, we define sub-matrices156

Q and R of T. The elements of sub-matrix Q only contain transition probabilities between157

non-absorbing states in S. It is a square matrix of size |S| − 3. The sub-matrix R contains158

the transition probabilities from non-absorbing states to absorbing states. It is a matrix of size159

(|S| − 3)× 3. The probability that the process is absorbed in state sA, when it begins from the160

non-absorbing state, sNA is given by the element corresponding to the state-pair (sNA, sA) in161

the matrix162

B := (I−Q)−1R. (7)

Here I is the identity matrix. The absorption probabilities are thus,163

ρC = B((N−1,1,0),(N,0,0))

ρD = B((N−1,1,0),(0,N,0)),

ρX = B((N−1,1,0),(0,0,N)).
(8)
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Results164

Rescue by deterministic memory-1 strategies165

166

In order to study whether conditional mutations save a resident ALLC population against an167

invasion by ALLD, we begin by examining the case where X is a deterministic memory-1168

strategy. We first study the dynamics in which mutations are triggered whenever ALLD is169

present (k = 1).170

We find that among deterministic memory-1 strategies, TFT provides the best defense171

against an ALLD invasion (Fig. 2). While conditional mutations to strategies S2, S8, S9 and172

S14 suppress an ALLD invasion, they do not restore the ground state as effectively as TFT173

because these rescue strategies themselves out-compete ALLC. Once ALLD is eradicated and174

mutation stops, the population, which is now composed of X and ALLC, may favor fixation175

of X over ALLC. For example, this is the case when the rescue strategy X is win-stay-lose-176

shift24, S9. In contrast, when X is TFT then the fixation of ALLC is favored, because it weakly177

dominates TFT in the infinitely repeated game, which we consider.178

The only other deterministic strategy that displays comparable rescue property is S11. This179

strategy behaves identically to TFT with the exception that it cooperates if both players defect180

in the last round - leading to its name firm-but-fair 25, FBF. This strategy is also known under the181

name Forgiver29. ALLC also weakly dominates FBF. But since FBF has a higher self-payoff182

than TFT (see Table 1), it has higher fitness than TFT in any mixed population with ALLC. As183

a result, FBF contributes to a weaker rescue effect than TFT.184

For both TFT and FBF, we observe that rescue is most successful for intermediate mutation185

rates. Although a high mutation rate substantially reduces the chances that ALLD takes over, it186

risks producing a residual population in which the abundance of X is much greater than that of187

ALLC. In this case a return to a homogeneous ALLC ground state is unlikely.188

This particular problem disappears if we consider a simple extension of our stochastic pro-189

cess: Once ALLD is eliminated, a back mutation from X to ALLC offspring with probability190

µback(> 0) is triggered. Now the process is guaranteed to end up in the ground state of only191

ALLC once ALLD becomes extinct. Interestingly, we observe that the strategy S2 — to coop-192

erate only after DC — provides marginally better rescue than TFT in this process as long as the193
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mutation rate µ is not too high (see Supplementary Figure S3).194

We note that the mechanism of conditional mutation backfires against ALLC when the res-195

cue strategy is poorly chosen. For some X, the odds that ALLD takes over increases in com-196

parison to the case where ALLC never mutates (µ = 0). For the specific parameters we adopt197

in Figure 2, this occurs when X is S5 (anti TFT), S7 (cooperate always, except after mutual198

cooperation), S13 (cooperate always, except after CD), or S0 (ALLD itself).199

We also study the case where rescue response is delayed (k = 25). In this case, muta-200

tions only occur when the number of ALLD individuals exceed the threshold, k = 25. We201

summarize the result in Supplementary Figure S2. While rescue outcomes are always worse202

compared to k = 1, TFT still acts as the best rescue strategy, among all deterministic memory-1203

strategies. Importantly, strategies that performed reasonably well in eradicating ALLD earlier,204

now do poorly. In fact for most X, outcomes are almost identical to the case where mutations205

remain absent (µ = 0). For our parameters, TFT is the only strategy that brings the restoration206

probability close to one.207

We also examine how deterministic memory-1 strategies perform as rescue strategies under208

an alternative mutational scheme, where the mutation probability is not a step function of the209

number of ALLD individuals, but increases linearly. Specifically, we consider a mutation rate210

defined by µ = ND/(N − 1). In this case, the probability of mutation from ALLC to X is211

zero when ALLD is absent, increases linearly with the number of ALLD in the population, and212

reaches one when N−1 out of N individuals are ALLD. The results are presented in Supple-213

mentary Figure S8. Again we find that TFT is the best rescue strategy among deterministic214

memory-1 strategies (see Figure S8A). We also compare the performance of the linear mutation215

function with the step function (Figure S8B). For this comparison, we used a step function of216

µ = 0.5 at k = 1. For most rescue strategies, the linear mutation function performed better.217

But for TFT, there was no notable difference between the two, and for FBF, the step function218

performed considerably better.219

Rescue by reactive strategies220

Reactive strategies respond to the co-player’s most recent move15. They are a two dimensional221

subspace of memory-1 strategies. A reactive strategy S(p, q) cooperates with probability p after222

co-player cooperates, and cooperates with probability q after co-player defects. That is, for a223

reactive strategy S(p, q) we have pCC = pDC = p and pCD = pDD = q. For example, TFT is a224

reactive strategy with (p, q) = (1, 0). We perform numerical computations to identify the best225
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rescue strategy among the reactive strategies (see Fig. 3A). As before, we identify that rescue226

is most successful for intermediate mutation rates, µ. In addition, best rescue is performed by227

a reactive strategy that has p ≈ 1, and q ≈ 0. Those strategies are close to TFT. The values of228

p and q for the best rescue strategy depend on µ. In particular, for some values of µ (these are229

µ = 0.4, 0.5 and 1 in Fig. 3A), the best rescue strategy is exactly TFT.230

231

Rescue by memory-1 strategies232

We search for the best rescue strategy in the entire memory-1 space, which is given by the hy-233

percube [0, 1]4. The details of our search process are described in Methods. The findings are234

summarized in Fig. 3B. We observe that the best rescue strategy has the form (1, pCD, pDC, 0).235

Unlike the best rescue strategy in the reactive space, here the best rescue strategy always fully236

cooperates with ALLC (pCC = 1) and fully defects with ALLD (pDD = 0). The numerical val-237

ues of pCD and pDC depend on µ and the remaining model parameters, which are b = 5, c = 1238

and N = 50 (see Fig. 3B). We also plot the self-payoff of the best memory-1 strategy as func-239

tion of the mutation rate, µ (see Fig. 3B). For low values of µ the self payoff decreases, but for240

larger values it increases again.241

242

Search for the ideal rescue strategy243

244

Let us now search for the ideal rescue strategy but independent of any constraints that are245

imposed by specific strategy spaces. The performance of a rescue strategy, X, depends on five246

numbers: (i) the payoff that X receives from ALLC, (ii) the payoff that X receives from ALLD,247

(iii) the payoff that ALLC receives from X, (iv) the payoff that ALLD receives from X, and (v)248

the payoff X receives from itself. It is evident from the search within the space of memory-1249

strategies that the optimal rescue strategy, X, fully cooperates with ALLC while fully defecting250

against ALLD. Hence, the first four numbers must be: (i) b − c, (ii) 0, (iii) b − c, (iv) 0. The251

only quantity that needs to be optimized is the payoff X receives from itself which must lie in252

the interval [0, b− c].253

Our results are shown in Fig. 4B. If mutations are triggered by the presence of a single254

ALLD individual, k = 1, the optimal self-payoff of X decreases with mutation rate, µ, up255

to a certain point, after which it begins to increase. There are two opposing effects. A high256

self-payoff of X makes it more likely that ALLD becomes extinct. But a high self-payoff of X257
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makes it harder for ALLC to reach fixation after ALLD has become extinct. For small µ, the258

first effect is more important. For large µ, the second effect is more important. The optimal-r259

curve aligns with the self-payoff of the best memory-1 rescue strategy of Fig. 3B, indicating260

agreement between the two searches.261

When rescue is delayed, k = 10, the optimal self-payoff, r, is higher. In this case, opposing262

the spread of ALLD is of primary importance.263

Evolutionary dynamics in the infinite population model264

We now study the evolutionary dynamics of rescue in the limit of infinitely large population size.265

In the absence of mutation, the standard approach is given by the replicator equation30–33. In the266

presence of mutation, the standard approach is given by the replicator-mutator equation31,34–37,267

which we use here. We analyze two versions of the replicator-mutator equation: one in which268

mutations occur during replication and the other in which mutations occur independently of the269

replication process34,38–40. In the main-text we focus on the latter version. In the Supplementary270

Information, we demonstrate that these two approaches produce qualitatively similar outcomes271

for our context.272

In particular, we study the dynamics of a three-strategy system with ALLC, TFT and ALLD.273

Their relative frequencies are x, y and z, respectively. We have x+y+z = 1. Mutations from274

ALLC to TFT occur at a fixed rate µ. Evolutionary dynamics are given by275

dx

dt
= x(fx − f̄)− µx,

dy

dt
= y(fy − f̄) + µx,

dz

dt
= z(fz − f̄).

(D1)

Here fx, fy and fz represent frequency-dependent fitness of the three types. We have276
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fx = b(x+ y)− c

fy = (b− c)(x+ y/2)

fz = bx

(9)

The average fitness is f̄ = xfx+yfy+zfz = (b−c)(x+xy+y2/2). The equation is defined277

on the simplex ∆2, which is the set {(x, y, z) ∈ R3 | x + y + z = 1, 0 ≤ x, y, z ≤ 1}. The278

simplex ∆2 is invariant under the dynamics given by Eq. (D1). Any point in this set satisfies279

ẋ + ẏ + ż = 0. Solutions that begin in this set, remain in this set forever. The corners of280

the simplex, (1, 0, 0), (0, 1, 0) and (0, 0, 1), represent the homogenous populations of ALLC,281

TFT and ALLD respectively. In Proposition 1 of Supplementary Information, we characterize282

all rest points of (D1) that lie in the simplex. In Proposition 2, we characterize the conditions283

under which each rest point is asymptotically stable.284

As shown in Fig. 5A, the evolutionary dynamics depend on the value of the mutation rate,285

µ. For µ = 0 the corners of the simplex are saddle points. In addition, there is an interior286

center which is surrounded by periodic orbits41. In the absence of TFT, ALLC is dominated287

by ALLD: therefore any mixed population of ALLC and ALLD converges to a homogeneous288

ALLD population.289

We find two critical mutation rates, µ1 and µ2. They are given by290

291

µ1 = b

(
1−

√
1 +

c2

(b− c)2

)
+

c2

b− c
(10)

and292

µ2 =
b− c

2
(11)

We show in Supplementary Information that b > c > 0 implies that µ1 < µ2.293

If 0 < µ < µ1, there is an unsaturated fixed point on the edge between ALLC and TFT.294

This saddle point, which attracts all initial conditions where ALLD is absent, can be invaded by295

ALLD. In addition, there is an interior equilibrium which is asymptotically stable. All initial296

conditions with x > 0 and z > 0 converge to the interior equilibrium. All initial conditions297
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with x = 0 and z > 0 converge to the TFT corner.298

If µ1 < µ < µ2, the fixed point between ALLC and TFT is saturated and asymptotically299

stable. All initial conditions with x > 0 converge to this boundary equilibrium. There is no300

interior equilibrium. All initial conditions with x = 0 and z > 0 converge to the TFT corner.301

For all initial conditions with z < 1, ALLD becomes extinct.302

If µ2 < µ the corner point of TFT is asymptotically stable. All initial conditions with x > 0303

or y > 0 converge to a population that is homogeneous in TFT. For all initial conditions with304

z < 1, ALLD becomes extinct.305

In Fig. 5B, we show the equilibrium frequencies of the three strategies as function of the306

mutation rate µ. We observe that the equilibrium frequency of ALLC attains a maximum for307

µ = µ1. The maximum equilibrium abundance of ALLC for µ > 0 is given by308

309

xmax = 1−

√
2(b2 + c2)− 2b(c+

√
(b− c)2 + c2)

b− c
(12)

Therefore the deterministic system has an optimum mutation rate that maximizes the abun-310

dance of ALLC. In the stochastic system, we also found that intermediate mutation rates were311

optimal. We also note that µ ≥ µ1 guarantees the extinction of ALLD.312

Discussion313

In this paper, we have shown that a population of ALLC can be protected against invasion of314

defectors by mutating toward a rescue strategy. We imagine a situation where the presence315

of defectors triggers a warning signal that activates the mutation. We examine the resulting316

mutation-selection dynamics for both a stochastic system, which describes finite population317

size, and a deterministic system, which describes infinite population size. For both systems,318

we assume that individuals in the population are randomly paired to play infinitely repeated319

donation games. Our work adds to the larger body of literature, which studies the role of320

mutation-generated diversity in the context of evolution of cooperation42–48.321

We have focussed on the donation game as it offers the simplest framework for illustrat-322
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ing the role of rescuing strategies. The donation game is widely used for the study of direct323

reciprocity16,25. A donation games is a special case of the Prisoner’s Dilemma2, which is the324

most stringent game for studying evolution of cooperation3,9: while mutual cooperation yields325

higher payoffs for both players than mutual defection, cooperation is not the individually ra-326

tional choice. Our framework is not limited to the donation game and can readily be applied327

to other scenarios. In Supplementary Figures S6 and S7, we present the performance of the328

16 deterministic memory-1 strategies as rescuers of an ALLC population, when the underlying329

game is a Prisoner’s Dilemma or a Stag Hunt. In the Prisoner’s Dilemma (see Fig. S6), TFT330

remains the best rescue strategy among deterministic memory-1 strategies. In the Stag-Hunt331

game (Fig. S7), no deterministic memory-1 strategy reliably restores the ALLC ground state,332

as the rescue strategy often takes over the population. For example, when GRIM is used, ALLD333

is suppressed at high mutation rates, but the population is more likely to absorb into the GRIM334

state than the ALLC state. In such games, employing back-mutations, as previously discussed,335

may enable the recovery of the ALLC population.336

For the stochastic system, we have searched for the optimal rescue strategy in the space of337

memory-1 strategies. Among deterministic and reactive memory-1 strategies, TFT and TFT-like338

strategies serve as the best rescuers (Fig. 2, 3A). In the full, stochastic memory-1 space, the best339

rescue strategy shares key properties with TFT: it fully cooperates with ALLC but fully defects340

with ALLD (see Fig. 3B). For a comparison between TFT and the optimal rescue strategy341

see Supplementary Figure S10. For such a strategy, its self payoff determines its efficiency to342

rescue the ALLC population (see Fig 4).343

For the deterministic system, we study a replicator-mutator equation, considering the strate-344

gies ALLC, ALLD, and TFT. We examine how the rate of mutation from ALLC to TFT, µ,345

affects the three-strategy dynamic (see Fig. 5). Our analysis reveals a critical mutation rate µ1346

above which ALLD is guaranteed to perish from any mixed population. Furthermore, µ1 is also347

optimal: at µ = µ1, ALLC attains maximal abundance at an asymptotically stable equilibrium.348

While we have thoroughly explored TFT as the rescue strategy in the infinite population model,349

future work will focus on extending the analysis to a more general class of rescue strategies350

characterized by the following properties: the strategy fully cooperates with ALLC, fully de-351

fects against ALLD, and achieves an arbitrary payoff r ∈ [0, b− c] when playing against itself352

in direct competition.353

Most approaches to evolution of cooperation by direct or indirect reciprocity conclude354

that cooperation can only be sustained by populations of conditional cooperators (discrimi-355
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nators)17,24,35,49–54. Our paper suggests an alternative role for discriminators in evolution. In356

the context of direct reciprocity, we demonstrate their success as temporary helpers: they only357

emerge when unconditional cooperators (ALLC) need help to fight off an invasion of defectors.358

After the defectors are eliminated, the discriminators naturally become extinct thereby restor-359

ing the ALLC population. This mechanism of transient helpers is reminiscent of findings from360

other models of evolution of cooperation—those not based on direct reciprocity—where type X361

assists in eliminating type Z to protect type Y, but is ultimately eliminated by Y once its purpose362

is served55,56.363

For our mechanism to succeed, it is important that ALLC dominates the rescue strategy,364

as this increases the likelihood that, once defectors are eliminated, ALLC can outcompete the365

helpers and reclaim the population. In our case, TFT, which is a highly effective rescuer, is dom-366

inated by ALLC because of its inability to fully cooperate against itself in the presence of im-367

plementation errors. In this sense, errors are not an impediment, as previously argued35,49,51,57,368

but rather a critical factor behind TFT’s role in helping to re-establish stable cooperation. In369

future works, it will be valuable to explore how the rescue mechanism operates in the context370

of indirect reciprocity53,58–63 and in spatial games or evolutionary graph theory64–67.371
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Methods372

Computation of transition matrix. For the finite population model, the transition matrix T

collects probabilities of transition between states in S. The probability of transition from state
Na := (i, j, N−i−j) to Nb := (q, r,N−q−r) in a step is given by Eq. (13). In the following
we denote with µe the value that the mutation function µe(ND; k) attains at state Na as per Eq.
(2). We express the transition probability in terms of the fitnesses FC ,FD and FX of the three
strategies at population state Na. We define Fw := iFC + jFD + (N−i−j)FX .

TNa→Nb
=



(1− µe) ·
iFC

Fw

· N − i− j

N
if (q, r) = (i+ 1, j)

(1− µe) ·
iFC

Fw

· j

N
if (q, r) = (i+ 1, j − 1)

jFD

Fw

· N − i− j

N
if (q, r) = (i, j + 1)

(N − i− j)FX

Fw

· j

N
+ µe ·

iFC

Fw

· j

N
if (q, r) = (i, j − 1)

jFD

Fw

· i

N
if (q, r) = (i− 1, j + 1)

µe ·
iFC

Fw

· i

N
+

(N − i− j)FX

Fw

· i

N
if (q, r) = (i− 1, j)

1−
∑

s̸=Na

TNa→s if (q, r) = (i, j)

0 otherwise

. (13)
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Payoffs when TFT faces ALLC, ALLD or itself in the limit of rare implementation error.373

Consider the case where strategies are subject to implementation errors. An intended coop-374

eration is executed as defection with probability αε and an intended defection is executed as375

cooperation with probability βε. Let us assume that these two types of error are independent.376

In this setting, TFT or (1, 0, 1, 0) is effectively TFT(α, β, ε) := (1−αε, βε, 1−αε, βε). Simi-377

larly, ALLD and ALLC are respectively ALLD(α, β, ε) := (βε, βε, βε, βε), and ALLC(α, β, ε)378

:= (1−αε, 1−αε, 1−αε, 1−αε).379

We consider α, β ≥ 0 and compute the expected long-run payoffs for strategy s1(α, β, ε)380

against strategy s2(α, β, ε) in the limit ε → 0+. Here s1 and s2 are TFT, ALLD or ALLC. Since381

these strategies are effectively purely stochastic, the transition matrix W(α, β, ε), which col-382

lects the probability of transition between the states CC,CD,DC and DD between consecutive383

rounds is irreducible. The Markov chain therefore has a unique stationary distribution which is384

given by68
385

v(α, β, ε) = (1, 1, 1, 1) · (I+U−W(α, β, ε))−1 . (14)

Where I is the identity matrix of size 4 and U is a 4 × 4 matrix with all entries equal to 1.386

The expected long-run payoff of s1 and s2 in the limit of rare implementation errors is given by387

388

(π1(α, β), π2(α, β)) =

(
lim
ε→0+

v(α, β, ε)

)
·

(
b− c −c b 0

b− c b −c 0

)⊺

(15)

We compute the payoffs between ALLC, ALLD and TFT using this method. They are389

390

ALLC ALLD TFT


ALLC b− c −c b− c

ALLD b 0 0

TFT b− c 0 (b− c)
β

α + β

. (16)

For the case α = β (i.e., Table 1), TFT earns (b− c)/2 against itself. So long as α+ β > 0,391

TFT can, in principle, earn any self payoff in the interval [0, b− c]. In every calculation in this392

paper, we have assumed α=β.393

394

Search process for the best rescue strategy in reactive space: For Figure 3A we perform nu-395
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merical computations to identify the best rescue strategy, (p, q), in the reactive strategy space,396

[0, 1]2. Specifically, we conduct a grid search over 500× 500 uniformly spaced points in [0, 1]2397

and report the strategy that maximizes the restoration probability of the ground state. For com-398

parison, we perform an additional search restricted to rescue strategies with p= 1. We report399

the comparison in Supplementary Figure S9.400

401

Search process for the best rescue strategy in memory-1 space: For Figure 3B we perform402

numerical computations to identify the best rescue strategy in the memory-1 space, [0, 1]4. For403

our computaitons, we consider the following parameters for our model N (population size) =404

50, b, c (benefit and cost of cooperation) = 5, 1 and k (threshold of conditional mutations) = 1.405

Our search process was three step. In the first step, we performed a 20×20×20×20 uniformly406

spaced grid-search in the memory-1 space, and looked for the strategy that yielded highest407

restoration probability to ALLC. The best strategy from this first step had pCC = 1, pDD = 0.408

In the second step, we performed search in a subset of [0, 1]4. In this search pCC was restricted409

to [0.95, 1], pDD to [0, 0.05] while pCD and pDC to [0, 1]2. We use 20 uniformly spaced points410

for pCC and pDD while 50 for pCD and pDC. The best strategy from the second search also had411

pCC = 1 and pDD = 0. In the third and final search, we fix pCC = 1, pDD = 0 and perform a412

500× 500 uniformly spaced search in [0, 1]2 to find the optimal pCD and pDC.413

Appendix: Analysis of the infinite population model414

In the Propositions 1 and 2 below, we respectively characterize the fixed points of (D1) and the415

corresponding condition for the local stability of these fixed point. Proposition 3 describes the416

asymptotic extinction of ALLD from any mixed population.417

418

Upon adding up the dynamical equations in Eq. (D1), we get ẋ + ẏ + ż = 0. The triangular419

simplex ∆2 := {(x, y, z) ∈ R3 | x + y + z = 1, x, y, z ≥ 0} is thus invariant to (D1). If the420

dynamics begins in ∆2 it remains there forever. We focus on (D1) in this set. Additionally,421

subsets {(x, y, z) ∈ ∆2 | z = 0} and {(x, y, z) ∈ ∆2 | x = 0} of ∆2 are also invariant to Eq.422

(D1). These subsets form two edges of the triangular simplex in which ALLD and ALLC are423

respectively absent. Finally, the last edge, {(x, 0, z) | x + z = 1} is only invariant if µ = 0,424

otherwise not. The proposition below characterizes all rest points of (D1) in ∆2.425

18



Proposition 1 (Rest points of (D1) in ∆2). For the replicator-mutator equation (D1), the fol-426

lowing are the rest points in ∆2 provided associated conditions (if any) are met.427

1. xTFT := (0, 1, 0),428

2. xALLD := (0, 0, 1),429

3. xALLC := (1, 0, 0) if and only if µ = 0,430

431

4. xE :=

(
1−
√

2µ

b− c
,

√
2µ

b− c
, 0

)
, if and only if 0 < µ <

b− c

2
,432

433

434

5. xI :=

(
(b− c)(c+ µ)2

2b(c2 − µ(b− c))
,
c+ µ

b
, 1− c+ µ

b
− (b− c)(c+ µ)2

2b(c2 − µ(b− c))

)
iff 0≤µ<µ1.435

436

where, µ1 is given by Eq. (10).437

We include proofs of Propositions in the section Proofs in Supplementary Information. The438

above proposition lists five possible rest points of (D1) in ∆2. The first three, xTFT, xALLD, and439

xALLC are three corners of the simplex. In these points, the population only consists of TFT,440

ALLD or ALLC respectively. The fourth rest point, xE, when it exists, is strictly in the interior441

of the edge where ALLD is absent (i.e., both ALLC and TFT are present). Finally, the last rest442

point, xI when it exists, is strictly in the interior of ∆2 (i.e., all strategies coexist). We note the443

following degenerate cases: a) when µ = 0, xE = xALLC, b) when µ = (b− c)/2, xE = xTFT.444

We also note that µ1 < µ2 := (b− c)/2 under the assumption that b > c > 0 (see end of Proof445

of Proposition 1). In the proposition below, we characterize the dynamic stability of these rest446

points.447

Proposition 2 (Asymptotic stability of rest points of (D1)). The following statements describe448

the asymptotic stability of rest points of (D1) with respect to perturbations in ∆2. Each state-449

ment subsumes that the relevant condition for the fixed point’s existence is met (from Proposition450

1).451

1. The rest points, xALLD and xALLC, lying at corners of ∆2, are not stable.452
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2. The third corner rest point, xTFT, is stable if and only if µ > (b− c)/2.453

3. The rest point xE, that lies on the boundary where ALLD is absent, is stable if and only if454

µ > µ1.455

4. The rest point, xI, lying strictly in the interior of ∆2, is stable if and only if µ > 0.456

Furthermore, if the fixed point xE exists, any solution starting from the set {(x, 1− x, 0) | 0 <457

x ≤ 1}, asymptotically converges to xE (the set includes x = 1 if µ > 0, otherwise not).458

Additionally, at µ = 0, the interior fixed point xI acts as a center for periodic orbits in ∆2.459

First, the Proposition claims that rest points corresponding to homogenous populations of ALLC460

and ALLD are not stable. We show that introducing TFT in small amounts to an ALLD pop-461

ulation destabilizes it. Similarly, introducing ALLD destabilizes an ALLC population. When462

µ ≤ (b − c)/2, a homogenous TFT population is also not stable since a small introduction463

of ALLC grows. However, if mutations are too frequent, µ > (b − c)/2, a homogenous TFT464

population is stable. Second, the Proposition claims that the value of µ determines the stability465

of the ALLC-TFT coexistence. This coexistence is stable when µ1 < µ < (b − c)/2. When466

µ ≤ µ1, this coexistence is not stable; a small introduction of ALLD into this mixed population467

grows. Finally, the Proposition claims that the three types — ALLC, TFT and ALLD — can468

stably co-exist, if conditions allow for such a coexistence in the first place and the mutation rate469

is positive (that is, 0 < µ < µ1). At µ = 0, this coexistence acts as a center for periodic orbits.470

We also show that any population containing ALLC but no ALLD, asymptotically reaches this471

ALLC-TFT coexistence. This also implies that this coexistence is always stable to perturbations472

that do not involve ALLD.473

474

Corollary 1. The strategy ALLC attains maximal frequency at a stable coexistence when µ=µ1.475

476

Proposition 3 (Extinction of ALLD from any mixed population when µ is sufficiently high). If477

µ ≥ µ1, any solution (x(t), y(t), z(t)) of (D1) with (x(0), y(0), z(0)) ∈ ∆2 such that z(0) ∈478

[0, 1) has limt→∞ z(t) = 0.479

This Proposition claims that the dynamics (D1) eliminates ALLD from any starting population480

that has ALLD and other strategies (either TFT, ALLC or both), provided the mutation rate, µ481

is atleast µ1.482
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Data availability: The necessary data and code for this manuscript has been archived. They483

can be found in the referenced link69.484
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(A) Evolutionary dynamics without conditional mutations (B) Evolutionary dynamics with conditional mutations (ALLC to X)

1. Ground state: An ALLC population

3. Final states:

Birth-death process:

Ground state restored ALLD takes over

1. Ground state: An ALLC population

3. Final states:

Birth-death process:

Ground state restored ALLD takes overX takes over

2. One ALLD mutant introduced 2. One ALLD mutant introduced

1-𝜇!

𝜇!
𝜇!  = 

𝜇 

0 

#      ≥ k

#      < k

Figure 1: Two evolutionary dynamics involving strategies of the repeated donation game. For both
evolutionary dynamics illustrated in this Figure, we consider the same starting point. The population
which evolves is finite, well-mixed and initially composed of individuals who use the strategy to always
cooperate (ALLC) in an infinitely repeated donation game. We call this population the ground state. In
this population, a single individual switches to the strategy to always-defect (ALLD). This is the shared
starting point of the two distinct dynamics we study from here onwards. (A) The simple Birth-death
process, In this process, first, an individual is randomly selected from the population to give birth, with
selection probability proportional to its fitness. Fitness of an individual is defined as the exponential of
the expected per-round payoff of its strategy. Next, an individual is selected uniformly at random from
the remaining population members to die. The process is repeated from first step. This dynamic results in
two possible final states for the population; the initial ground state and the state in which all individuals
adopt ALLD. (B) Birth-death process with condtional mutations, In an alternate dynamic we study
the Birth-death process but with the exception that mutations may happen during the birth event. In
particular, with probability µe, an ALLC individual gives birth to an offspring that adopts strategy X
in the repeated game. With probability 1 − µe it gives birth to an individual that adopts ALLC. The
exact mutation probability depends on the number of ALLD individuals in the current population. In
this model, mutations occur only if number of ALLD individuals exceed a certain threshold, k (≥ 1).
Reproductions from ALLD and X are not subject to mutations. This dynamic has three final states; the
ground state, the state in which everyone adopts X, and the state in which everyone adopts ALLD.
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Figure 2: Among all deterministic memory-1 strategies, mutations to TFT result in maximal sta-
bilization of ALLC. We consider k = 1 for the stochastic process described in Fig. 1(B). That is,
mutations from ALLC to X begin when there is a single ALLD mutant in the population and stops only
when the population reaches a state in which ALLD is absent. For each subplot, we consider a fixed
memory-1 strategy as X, the strategy to which ALLC conditionally mutates with probability µ. We plot
the distribution of the population’s three possible final states—where everyone adopts ALLC (green),
X (orange), or ALLD (red)—as we vary µ. We present this for all 16 possible deterministic memory-1
strategies as X. Here, a deterministic memory-1 strategy is represented by a four-digit string of 0s and
1s in the form: pCCpCDpDCpDD . These elements denote the probability to cooperate in a round when
the outcome of the previous round is CC, CD, DC or DD respectively. The likelihood of restoring the
ground state is the highest when ALLC conditionally mutates to TFT (row 3, column 3) at a rate which
is optimally high. For this figure, we take a population with 100 individuals. The benefit, b and cost of
cooperation, c in the donation game are 5 and 1 respectively.
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Reactive Memory-1 Full Memory-1 (A) (B)

Figure 3: In the reactive memory-1 space, the best rescuers are geometrically close to TFT, whereas
in the full memory-1 space, best rescuers have the discriminating property: they fully cooperate
with always cooperate and fully defect with always defect. We perform numerical computations
to identify the best rescue strategy in the space of reactive memory-1 strategies (panel A) and in the
space of all memory-1 strategies (in panel B) (A) A reactive memory-1 strategy (p, q) responds solely
to co-player’s most recent action. It cooperates with probability p after co-player cooperates, or with
probability q after co-player defects. That is, pCC = pDC = p and pCD = pDD = q. We examine 500×
500 reactive memory-1 strategies uniformly spaced in [0, 1]2. For each X, we compute the restoration
probability of the ALLC population. As we vary µ, we plot the maximum restoration probability obtained
from 500 × 500 choices for X, along with the corresponding strategy X that yields this maximum. We
find that ALLC restoration probability is highest when µ is neither too high nor too low. Furthermore,
the best rescue strategy is geometrically close to (p, q) = (1, 0), TFT. In fact, at µ = 0.4, 0.5 and 1,
the best strategy is exactly TFT. (B) We perform a search, similar to panel A, for finding the best rescue
strategy in the entire memory-1 space (for more details on the search process, see Methods). The best
rescue strategy fully cooperates with ALLC (pCC = 1) and fully defects with ALLD (pDD = 0). The
strategy components pCD and pDC of the best rescue strategy determines its self-payoff, which is crucial
in the rescue dynamic. We consider k = 1, i.e., rescue mutations occur whenever ALLD is present, and
a population of size N = 50. All other parameters remain consistent with those in Figure 2.
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Figure 4: Role of self-payoff of discriminating strategies in the rescue of ALLC. (A) We consider a
strategy X that fully cooperates with ALLC, fully defects with ALLD, and receives a payoff of r against
itself in an infinitely repeated game, where r ∈ [0, b− c]. In Methods, we demonstrate that an example
of X is TFT in an environment where two types of implementation errors—specifically, cooperating
instead of defecting, and defecting instead of cooperating—are rare, independent, and have different
probabilities. We are interested to study how r, the self payoff of X affects the rescue of ALLC. (B) To
this end, we numerically compute the probability that the ALLC ground state is restored as we vary r
and the conditional mutation probability from ALLC to X, µ. We study two cases, k = 1 and k = 10. In
k = 1, mutations occur whenever ALLD is present. In k = 10, mutations occur only when the number of
ALLD in the population is atleast 10. A blue line denotes the values of r that maximize the probability
of ground state restoration for each value of µ. The white dot in each subplot denotes the pair (µ, r)
that attains the highest restoration probability of ALLC. The lower end of the color scale denotes the
probability of ALLC restoration when mutations do not occur. All other parameters remain consistent
with those in Figure 3.
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Figure 5: Analysis of the infinite population model with TFT as a rescuer shows an optimal µ (=
µ1) at which ALLC is stable in maximal frequency. (A) The infinite population model demonstrates
four unique phase portraits depending on the value of µ. At µ = 0, the dynamic demonstrates a cyclic
dominance between ALLC, TFT and ALLD. There is an interior fixed point that acts as center for
periodic orbits. When 0 < µ <µ1, the dynamic produces a stable coexistence between all three strategies
and an unstable coexistence between ALLC and TFT (see Eq. (10) for an expression of µ1 in terms of
b and c). Next, when µ ≥ µ1 but µ < µ2 =: (b − c)/2, the dynamic has a single stable rest point,
and in this rest point only TFT and ALLC are present. Finally for µ ≥ µ2, the only stable rest point is
the homogenous TFT population. In the last two cases, the stable rest point is the final dynamical fate
of all populations that are composed of ALLC and ALLD. (B) We show the frequency of ALLC, TFT
and ALLD at rest points which are either in the interior of the simplex or at the ALLC-TFT edge of the
simplex. We mark the frequencies with dashed lines if it corresponds to an unstable rest point and a solid
line if it corresponds to a stable rest point. The maximum frequency of ALLC at a stable rest point is
at µ = µ1. (C) We show how the optimal mutation rate µ1 varies with cost of cooperation c while we
keep the benefit of cooperation b fixed. For this Figure, we take the benefit, b and cost of cooperation, c
in the donation game as 5 and 1 respectively (for comparison, we make a similar figue in Supplementary
Figure S4 for b = 5, c = 3).
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Supplementary Information
Stabilizing unconditional cooperation

1 The Replicator-Mutator equation I

We consider an infinitely large population where the relative frequency of ALLC, TFT and ALLD are

x, y and z respectively (with x+ y + z = 1). The rate of change of these relative frequencies follow the

dynamical equations,

dx

dt
= x(fx − f̄)− µx,

dy

dt
= y(fy − f̄) + µx,

dz

dt
= z(fz − f̄).

(D1)

Here fx, fy and fz are the fitness of the three types, given by their average payoff in the well-mixed

population. These are,

fx = (b− c)(x+ y)− cz

fy = (b− c)x+

(
b− c

2

)
y

fz = bx

(1)

The term f̄ denotes the average fitness of an individual in the population. That is, f̄ = xfx + yfy + zfz .

The term µ(≥ 0) here is the unconditional mutation rate from ALLC to TFT. In this model, we as-

sume that mutations from ALLC to TFT occur whenever the source, ALLC, is present in the population

(x > 0). In addition, the rate at which mutated TFT offsprings arise is proportional to x with proportion-

ality constant, µ.
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By adding up the dynamical equations in Eq. (D1), we get ẋ+ ẏ+ ż = 0. This implies that the triangular

simplex ∆2 := {(x, y, z) ∈ R3 | x+ y+ z = 1, x, y, z ≥ 0} is invariant to (D1). If the dynamics begins

in ∆2 it remains there forever. We only focus on the properties of (D1) in this set. Additionally, subsets

{(x, y, z) ∈ ∆2 | z = 0} and {(x, y, z) ∈ ∆2 | x = 0} of ∆2 are also invariant to Eq. (D1). These

subsets form two edges of the triangular simplex in which ALLD and ALLC are respectively absent.

Finally, the last edge, {(x, 0, z) | x + z = 1} is only invariant if µ = 0, otherwise not. The proposition

below characterizes all rest points of (D1) in ∆2.

Proposition 1 (Rest points of (D1) in ∆2). For the replicator-mutator equation (D1), the following are

the rest points in ∆2 provided associated conditions (if any) are met.

1. xTFT := (0, 1, 0),

2. xALLD := (0, 0, 1),

3. xALLC := (1, 0, 0) if and only if µ = 0,

4. xE :=

(
1−
√

2µ

b− c
,

√
2µ

b− c
, 0

)
, if and only if 0 < µ <

b− c

2
,

5. xI :=

(
(b− c)(c+ µ)2

2b(c2 − µ(b− c))
,
c+ µ

b
, 1− c+ µ

b
− (b− c)(c+ µ)2

2b(c2 − µ(b− c))

)
if and only if 0 ≤ µ < µ1.

where, µ1 is given by,

µ1 := b

(
1−

√
1 +

c2

(b− c)2

)
+

c2

b− c
. (2)

We include proofs of Propositions in the section Proofs. The above proposition lists five possible rest

points of (D1) in ∆2. The first three, xTFT, xALLD, and xALLC are three corners of the simplex. In these

points, the population only consists of TFT, ALLD or ALLC respectively. The fourth rest point, xE,

when it exists, is strictly in the interior of the edge where ALLD is absent (i.e., both ALLC and TFT are

present). Finally, the last rest point, xI when it exists, is strictly in the interior of ∆2 (i.e., all strategies

coexist). We note the following degenerate cases: a) when µ = 0, xE = xALLC, b) when µ = (b− c)/2,

xE = xTFT. We also note that µ1 < µ2 := (b − c)/2 under the assumption that b > c > 0 (see end

of Proof of Proposition 1). In the proposition below, we characterize the dynamic stability of these rest

points.
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Proposition 2 (Asymptotic stability of rest points of (D1)). The following statements describe the asymp-

totic stability of rest points of (D1) with respect to perturbations in ∆2. Each statement subsumes that

the relevant condition for the fixed point’s existence is met (from Proposition 1).

1. The rest points, xALLD and xALLC, lying at corners of ∆2, are not stable.

2. The third corner rest point, xTFT, is stable if and only if µ > (b− c)/2.

3. The rest point xE, that lies on the boundary where ALLD is absent, is stable if and only if µ > µ1.

4. The rest point, xI, lying strictly in the interior of ∆2, is stable if and only if µ > 0.

Furthermore, if the fixed point xE exists, any solution starting from the set {(x, 1− x, 0) | 0 < x ≤ 1},

asymptotically converges to xE (the set includes x = 1 if µ > 0, otherwise not). Additionally, at µ = 0,

the interior fixed point xI acts as a center for periodic orbits in ∆2.

First, the Proposition claims that rest points corresponding to homogenous populations of ALLC and

ALLD are not stable. We show that introducing TFT in small amounts to an ALLD population desta-

bilizes it. Similarly, introducing ALLD destabilizes an ALLC population. When µ ≤ (b − c)/2, a

homogenous TFT population is also not stable since a small introduction of ALLC grows. However, if

mutations are too frequent, µ > (b− c)/2, a homogenous TFT population is stable. Second, the Propo-

sition claims that the value of µ determines the stability of the ALLC-TFT coexistence. This coexistence

is stable when µ1 < µ < (b− c)/2. When µ ≤ µ1, this coexistence is not stable; a small introduction of

ALLD into this mixed population grows. Finally, the Proposition claims that the three types — ALLC,

TFT and ALLD — can stably co-exist, if conditions allow for such a coexistence in the first place and

the mutation rate is positive (that is, 0 < µ < µ1). At µ = 0, this coexistence acts as a center for periodic

orbits. We also show that any population containing ALLC but no ALLD, asymptotically reaches this

ALLC-TFT coexistence. This also implies that this coexistence is always stable to perturbations that do

not involve ALLD.

Corollary 1. The strategy ALLC attains maximal frequency at a stable coexistence when µ = µ1.

Proposition 3 (Extinction of ALLD from any mixed population when µ is sufficiently high). If µ ≥
µ1, any solution (x(t), y(t), z(t)) of (D1) with (x(0), y(0), z(0)) ∈ ∆2 such that z(0) ∈ [0, 1) has

limt→∞ z(t) = 0.

This Proposition claims that the dynamics (D1) eliminates ALLD from any starting population that has

ALLD and other strategies (either TFT, ALLC or both), provided the mutation rate, µ is atleast µ1.
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2 The Replicator-Mutator equation II

We now study an alternate Replicator-Mutator dynamic in the infinite population. In this dynamic, the

rate at which ALLC mutates to TFT is proportional to both the frequency of ALLC and fitness of ALLC.

The types evolve according to the equations

dx

dt
= x(gx(1− µ)− ḡ),

dy

dt
= y(gy − ḡ) + µxgx,

dz

dt
= z(gz − ḡ).

(D2)

Here g is the effective fitness of each type, defined as gi = fi + c. The term fi is the average payoff

of type i, as expressed in Eq. (1), and c, the cost of cooperation, is the shared baseline fitness of the

types. In this model 0 ≤ µ ≤ 1. We define ḡ := xgx + ygy + zgz = f̄ + c as the average fitness of

the population. We add c to each type’s fitness to ensure non-negative rate of growth for each type in

∆2. We find that the dynamics (D1) and (D2) qualitatively share the same phase portraits in ∆2, except

that their bifurcation points in µ are different. For a comparison, see Fig. 5 from main-text in which we

plot phase potraits of (D1) and Fig. S5. in which we plot the phase potraits of (D2). We summarize the

dynamical properties of (D2) in the propositions belowa.

Proposition 4 (Rest points of (D2) in ∆2). For the replicator-mutator equation (D2), the following are

the rest points in ∆2 provided associated conditions (if any) are met.

1. xTFT := (0, 1, 0),

2. xALLD := (0, 0, 1),

3. xALLC := (1, 0, 0) if and only if µ = 0,

4. xE,2 :=

(
1−
√

2bµ

b− c
,

√
2bµ

b− c
, 0

)
, if and only if 0 < µ <

b− c

2b
,

aWe checked using the symbolic computation software Mathematica that adding any baseline fitness α > c to each type’s
fitness also yields qualitatively similar phase portraits to dynamic (D1). We avoid that formulation because of lack of clean
expressions.
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5. xI,2 := (xI,2, yI,2, 1−xI,2−yI,2) if and only if 0 ≤ µ < µ1/b := µ2

where, xI,2 and yI,2 are given by,

xI,2 :=


c2 − bc(2− µ)µ− (1− µ)c

√
c2 − b2(2− µ)µ

b(b− c)(2− µ)µ
µ > 0

b− c

2b
µ = 0

(3)

yI,2 :=
bc(2− µ)− c2 − c

√
c2 − b2(2− µ)µ

b(b− c)(2− µ)
(4)

Similar to (D1), the new dynamic (D2) has five rest points. The corners corresponding to TFT and

ALLD populations are rest points. An ALLC population is a rest point only if µ = 0. There is an

interior rest point if µ ∈ [0, µ2) and there is a rest point strictly in the interior of the ALLC-TFT edge if

µ ∈ (0, (b−c)/(2b)). Moreover, like before xTFT = xE,2 at µ = (b−c)/(2b) and xALLC = xE at µ = 0.

Proposition 5 (Asymptotic stability of rest points of (D2)). The following statements describe the asymp-

totic stability of rest points of (D2) with respect to perturbations in ∆2. Each statement subsumes that

the relevant condition for the fixed point’s existence is met (from Proposition 4).

1. The rest points, xALLD and xALLC, lying at corners of ∆2, are not stable.

2. The third corner rest point, xTFT, is stable if and only if µ > (b− c)/(2b).

3. The rest point xE,2, that lies on the boundary where ALLD is absent, is stable if and only if µ > µ2.

4. The rest point, xI,2, lying strictly in the interior of ∆2, is stable if and only if µ > 0.

Furthermore, if the fixed point xE,2 exists, any solution starting from the set {(x, 1−x, 0) | 0 < x ≤ 1},

asymptotically converges to xE,2 (the set includes x = 1 if µ > 0, otherwise not). Additionally, at µ = 0,

the interior fixed point xI,2 acts as a center for periodic orbits in ∆2.

The proof of these Propositions on the rest points of (D2) and their stability proceeds identically as the

Proofs of Proposition 1 and 2.
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Proofs

Proof of Proposition 1. We represent the dynamics (D1) in vector format as

ẋ = (Gx(x),Gy(x),Gz(x)) (5)

where x := (x, y, z), and Gx(x) = x(fx− f̄)−µx, Gy(x) = y(fy − f̄)+µx, and Gz(x) = z(fz − f̄).

A rest point, x̄ := (x̄, ȳ, z̄), of the dynamic is defined as a point where ẋ = 0, or equivalently,

Gx(x̄) = Gy(x̄) = Gz(x̄) = 0. (6)

Since we are only interested in rest points that lie in ∆2, we use x̄+ ȳ + z̄ = 1.

Rest points at corners of ∆2: The corners (0, 1, 0) and (0, 0, 1) always satisfy these conditions and are

thus rest points, unconditionally. In addition, if µ = 0, the remaining corner, (1, 0, 0), is also a rest point.

Rest points at the boundary of ∆2: We now search for rest points in sets corresponding to the interior

of the boundary edges of ∆2 (i.e., edges excluding the corners). These are a) the TFT-ALLD edge:

{(0, y, 1−y) ∈ ∆2 | y ∈ (0, 1)}, b) the ALLC-ALLD edge: {(x, 0, 1−x) ∈ ∆2 | x ∈ (0, 1)}, and lastly

c) the ALLC-TFT edge: {(x, 1−x, 0) ∈ ∆2 | x ∈ (0, 1)}. At the TFT-ALLD edge, ẋ = 0, but

dy

dt
= y2

(
b− c

2

)
(1− y) > 0. (7)

Thus, there is no rest point in this set. At the ALLC-ALLD edge, ẏ = 0 only if µ = 0. However, at µ = 0

dx

dt
= −x(1− x)c < 0 (8)

on this set. So, there is no rest point in this set either. Finally at the ALLC-TFT edge, ż = 0 and

dx

dt
=

x(b− c)

2

(
(1− x)2 − 2µ

b− c

)
. (9)

There is a rest point in this set if 0 < µ ≤ (b− c)/2 and this rest point is given by

x̄ = xE :=

(
1−

√
2µ

b− c
,

√
2µ

b− c
, 0

)
(10)

Rest points strictly in the interior ∆2: Finally we search for rest points that belong in the subset of ∆2
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where at every point, all strategies are present, int∆2 := {x ∈ ∆2 | x, y, z ≥ 0}. By using Gy(x̄) =

Gz(x̄) = 0, we obtain that a fixed point x̄ must respect the following two equations simultaneously,

x̄
(
ȳ2(b− c)− µ

)
= ȳ2(1− ȳ)

(
b− c

2

)
(11)

ȳ2(b− c)(1− y)(bȳ − c− µ)(ȳ2(b− c)− 2µ) = 0 (12)

Besides the already evaluated fixed points, the point which satisfies these conditions simultaneously are

xI :=

(
(b− c)(c+ µ)2

2b(c2 − µ(b− c))
,
c+ µ

b
, 1− c+ µ

b
− (b− c)(c+ µ)2

2b(c2 − µ(b− c))

)
(13)

provided µ ̸= c2/(b − c). In order for xI to be a fixed point in int∆2, the elements must satisfy

0 < xI, yI, zI < 1. These give rise to the following conditions on µ,

xI > 0 ⇐⇒ µ <
c2

b− c
(14)

xI < 1 ⇐⇒ µ < −(b+ c) +

√
(b+ c)(b2 + 3c2)

b− c
=: µ′ (15)

yI < 1 ⇐⇒ µ < b− c (16)

zI > 0 ⇐⇒ µ <
c2

b− c
− b

(√
1 +

c2

(b− c)2
− 1

)
=: µ1 (17)

We do not explicitly include yI > 0 since it is trivial and always holds. Also, since these conditions

simultaneously imply zI < 1, we do not write it explicitly. From the above conditions, one derives that

zI > 0 =⇒ xI > 0 and yI < 1. For the latter, one needs to subtract µ1 from b − c to check that the

difference is always positive. Thus, µ < µ1 =⇒ µ < b − c. Finally we compare the conditions for

zI > 0 and xI < 1. We define a variable u = 1/(1−c/b) that lies in (1,∞) as b > c > 0. The difference

between µ′ and µ1 in terms of u can be simplified as

1

b

(
µ′ − µ1

)
= −(1 + u) +

√√√√(2u− 1)

(
1 + 3

(
u− 1

u

)2
)

+
√

(u− 1)2 + 1 (18)

≥ −(1 + u) +
√
(2u− 1) +

√
(u− 1)2 + 1 ≥ 0 if u ∈ (1,∞) (19)
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The relation µ′ ≥ µ1 means that zI > 0 implies xI < 1 and so µ < µ1 is the only relevant condition for

the existence of the interior fixed point xI.

Finally we show that under the assumption b > c > 0, µ1 < µ2 := (b−c)/2. Some algebraic steps verify

that the sign of µ2−µ1 is the same as the sign of 2b
√
b2 − 2bc+ 2c2−(b2+c2) if one assumes b > c > 0.

Considering t = c/b this is equivalent to checking the sign of L(t) := 2
√
1− 2t+ 2t2 − (1 + t2) for

t ∈ (0, 1). We note that L(0) = 1, L(1) = 0 and

dL
dt

= −2t− 2(1− 2t)√
1− 2t+ 2t2

< 2(t− 1) < 0 (20)

for t ∈ (0, 1) and therefore L(t) > 0 in this interval which implies µ2 > µ1 for b > c > 0.

Proof of Proposition 2. Stability of xALLD: To show that xALLD is unstable, we take a point xALLD(ε) :=

(0, 1 − ε, ε) in the neighbourhood of xALLD. This point lies in the edge connecting xTFT and xALLD.

All solutions starting in this set remain here (i.e., ẋ = 0). For any ε > 0, it is easy to verify that ż < 0 at

xALLD(ε). Therefore xALLD is not stable.

Stability of xALLC: The eigenvalues of the Jacobian of the right hand side G of the dynamic (D1) at

xALLC is given by

ΛG(xALLC) = (c,−(b− c),−µ) (21)

Since we assume c > 0, at µ > 0, there is a single eigenvalue that is positive. The eigenvector corre-

sponding to this eigenvalue is (
− c

c+ µ
,− µ

c+ µ
, 1

)
.

This eigenvector is parallel to the simplex and thus xALLC is not stable when µ > 0. At µ = 0, when

the one of the eigenvalues is 0, we observe that at any point xALLC(ε) := (ε, 0, 1 − ε) on the invariant

ALLC-ALLD edge, ẋ < 0. So, xALLC not stable for µ = 0 either, and thus never stable.

Stability of xTFT: The eigenvalues of the Jacobian of the right hand side G of the dynamic (D1) at xTFT

is given by

ΛG(xTFT) =

(
−b− c

2
,−b− c

2
,

(
b− c

2
− µ

))
(22)

Since we assume b > c > 0, the first two eigenvalues are strictly negative. The third eigenvalue is nega-

tive (or positive) when µ is strictly more (or strictly less) than (b− c)/2. The eigenvector corresponding

to this eigenvalue, (−1, 1, 0), is parallel to the simplex and thus xTFT is stable (or not) when µ is greater
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(or less) than (b− c)/2.

Stability of xE: The eigenvalues of the Jacobian of the right-hand side G around the rest point xE =

(1− yE, yE, 0) where yE =
√
2µ/(b− c) is given by

ΛG(xE) =

(
µ− (b− c),

√
2

(
√
µ−

√
b− c

2

)
,

−c(c+ µ) + b(c−
√

2µ(b− c) + µ)

b− c

)
(23)

Since the fixed point xE only exists when 0 < µ < (b − c)/2, the first two eigenvalues are strictly

negative. The third eigenvalue is strictly negative if and only if

b(µ−
√
2µ(b− c) + c)− (c+ µ)c < 0 =⇒ (24)

µ >
c2

b− c
− b

(√
1 +

c2

(b− c)2
− 1

)
= µ1 (25)

(26)

We confirm that the eigenvector corresponding to this third eigenvalue

vλ =

(
c
√

2(b− c) (4µ− c+ b)− c
√
µ (5b+ 5c− 2µ)(√

2(b− c)−√
µ
)(√

2µ(b− c)(2c− µ) + b(µ− c) + c2 − 3cµ
) , (27)

µ
(√

2µ(b− c)− b+ c
)

√
2µ(b− c)(2c− µ) + b(µ− c) + c2 − 3cµ

, 1

)

which satisfies vλ · (1, 1, 1)⊺ = 0. Thus the eigenvector is parallel to the simplex and therefore the

sign of its corresponding eigenvalue determines its asymptotic stability in the invariant simplex.

Stablity of xI: Finally for the rest point xI, the eigenvalues of the Jacobian has the following form
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ΛG(xI) =

(
− (b− c)(c+ µ)2

2 (−bµ+ c2 + cµ)
, (28)

1

2b2 (−bµ+ c2 + cµ)2

(
α(b, c, µ)µ+ i

√
β(b, c, µ)

)
,

1

2b2 (−bµ+ c2 + cµ)2

(
α(b, c, µ)µ− i

√
β(b, c, µ)

))

where α and β are polynomials on µ given by

α(b, c, µ) = b2(b− c)(c+ µ)
(
bµ− c2 − cµ

)
(29)

β(b, c, µ) = b2(b− c)4(c+ µ)2
(
µ− c2

b− c

)2(
(c+ µ)2(b− c)

(
c2

b− c
− µ

)
+ b2µ

(
µ− 2c2

b− c

))
(30)

From Proposition 1, we note that this interior fixed point only exists when µ < µ1 < c2/(b − c). One

can confirm that for these values α < 0 while β may change signs from positive to negative depending

on µ. The eigenvalues α ± i
√
β do not vanish to zero regardless. At µ = 0, there is one negative real

eigenvalue and two purely imaginary complex conjugate eigenvalues. The eigenvectors corresponding

to these eigenvalues at µ = 0 are given respectively by

vλ,1 =

(
1,

2b

b− c
, 1

)
(31)

vλ,2 =

(
−b+ ic

b− ic
,

2ic

b− ic
, 1

)
(32)

vλ,3 =

(
b+ ic

b− ic
, − 2ic

b− ic
, 1

)
(33)

where vλ,1 · (1, 1, 1)⊺ > 0 but the eigenvectors corresponding to purely imaginary eigenvalues satisfy

v · (1, 1, 1)⊺ = 0. Thus at µ = 0, the conjugate imaginary eigenvalues correspond to directions on the

simplex. The fixed point is therefore a center to periodic orbits that lie on the simplex. The analysis of

eigenvalues for µ > 0 is cumbersome, so we restore to studying the determinant and trace of the Jacobian

which have the following simpler forms,
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det(JG(xI)) =
(b− c)2(c+ µ)4(2b2µ− (c+ µ)2(b− c))

8b2(c2 − µ(b− c))2
, (34)

tr(JG(xI)) = −(b− c)(c2 + 4µc+ 3µ2)

2(c2 − µ(b− c))
. (35)

One can check that this determinant and trace are strictly negative simultaneously when the numerator of

the determinant is strictly negative which occurs when µ < µ1 (the trace is negative when this condition

holds as µ1 < c2/(b − c)). As none of the eigenvalues are zero for µ ∈ (0, µ1), the negative signs of

the determinant and the trace implies all eigenvalues have negative real parts, and so xI is asymptotically

stable.

Finally, on the invariant ALLC-TFT edge (z = 0), when 0 < µ < (b− c)/2, one observes from Eq. (9)

that ẋ > 0 if 0 < x < xE whereas ẋ < 0 when xE < x < 1.

Proof of Corollary 1. ALLC can exist in a stable coexistence either at xE or xI. Since we assume b >

c > 0, one can show that 0 < µ1 < (b − c)/2. Thus, for µ ∈ [0, µ1), the only stable coexistence in

which ALLC exists is xI and for µ ∈ [µ1, (b− c)/2), the only stable coexistence in which it exists is xE.

If one observes the expressions for xI and xE (the frequencies of ALLC in xI and xE respectively), one

notices that they are respectively increasing and decreasing in µ in the respective domains of existence

of those rest points. Thus, ALLC attains maximal frequency at a stable coexistence when µ = µ1

Proof of Proposition 3. We can check that the simplex ∆2, which is a a plane in R3, is invariant to the

differentiable dynamics (D1). So, we can apply the Poincare-Bendixson theorem1 on an open and planar

subset of R3 that contains this simplex.

As ∆2 is invariant to (D1), any solution starting from within is bounded. Therefore, any orbit passing

through a point in this simplex has a compact, non-empty ω-limit set. Also, by Proposition 1 and 2,

there are only finitely many fixed points, all of which are isolated. So, by Poincare-Bendixson theorem,

any orbit passing through a point within this simplex has its ω-limit set as a fixed point or a periodic orbit.

Now we rule out a periodic orbit in ∆2 for µ ≥ µ1. The boundary of ∆2, bd∆2 := {(x, y, z) ∈ ∆2 |
(x = 0) ∨ (y = 0) ∨ (z = 0)}, does not contain a periodic orbit as (0, 1, 0) is a fixed point. Now, let’s

assume there is a periodic orbit in the interior of ∆2. If so, the periodic orbit, which is restricted to a

plane, must enclose atleast one fixed point2. However, from Proposition 1 and 2, we know that there is

no fixed point in the interior of ∆2 when µ ≥ µ1 > 0. By contradiction, there is no periodic orbit in

the interior of ∆2 under this condition. Thus, for µ ≥ µ1, any solution begining in the simplex must

converge to a fixed (rest) point.
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We examine the limits of solutions that begin from (x(0), y(0), z(0)). First we study the case where

z(0) = 0. In this case the dynamic is restricted in the set {x ∈ ∆2 | z = 0} as ż = 0. So, limt→∞ z(t)

is trivially 0. Second we study the case where x(0) = 0. Here, as ẋ = 0, the dynamics is restricted to

{x ∈ ∆2 | x = 0}. Additionally, if z(0) ∈ [0, 1), ż ≤ 0 (equality at z(0) = 0). For these initial points,

limt→∞ z(t) = 0.

Now, we study the case where y(0) = 0. Unlike the previous two cases, the associated edge of the

simplex is not invariant when µ > 0. That is, in addition, if x(0) ∈ (0, 1), ẏ > 0 and the solution enters

the interior of the simplex: int∆2 := ∆2 \ bd∆2. As previously argued using the Poincare-Bendixson

theorem, any solution starting from int∆2 must converge to a fixed point when µ ≥ µ1 (which is the

case of interest). We study ẏ in a point (ε1, ε2, 1 − ε1 − ε2) that is arbitrarily close to the z = 1 corner

but inside ∆2. That is, 0 < ε1, ε2 ≪ 1. We find, upon neglecting third order terms on ε (and assuming

0 < c < b < ∞),

dy

dt
=
(
2ε1µ+ ε22(b− c)

)
> 0 (36)

Therefore, no solution from the interior converges to the z = 1 corner at which y = 0. These solutions

can only converge to one of the remaining rest points, all of which satisfy z = 0 (QED). One may study

ż at a point (1− ε1 − ε2, ε1, ε2) that is arbitrarily close to x = 1 to find that upon neglecting third order

terms of ε,

dz

dt
= ε2 (c(1− ε2)− bε1) > 0 (37)

Solutions also do not converge to the x = 1, the ALLC corner either. For µ > µ1, all interior solutions

converge to xE or xTFT.
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Supplementary Figures
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Supplementary Figure S1: Rescue outcomes in the finite population when tit-for-tat is the rescue strategy,
as we vary the benefit-to-cost ratio. We plot the distribution of the final states versus µ (exactly as Figure 2 in
main text) when tit-for-tat is the rescue strategy. We vary the benefit of cooperation b as we keep c fixed at 1. The
population size is 100.
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Supplementary Figure S2: Even when rescue is delayed (k = 25), tit-for-tat provides the best recue, among
all deterministic memory-1 strategies. We perform the exact computations as Figure 2 in main-text, with the
exception that k = 25 instead of k = 1.
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Supplementary Figure S3: Results from a variant of the finite population model. Here strategy X back-
mutates to ALLC after ALLD is extinct. We consider an additional step to the baseline version of the finite
population model. Here, after ALLD goes extinct, the strategy X mutates to ALLC with probability µback(> 0).
The process now has two final states: one in which ALLC takes over and the other in which ALLD takes over.
Outcomes for ALLD are unaffected as this additional step does not interfere in ALLD’s extinction (or fixation).
For any value of µback > 0, the probability that the process absorbs to the full-ALLC state can be computed by
simply adding ρALLC and ρX from the baseline process. Here we use the same parameters as Fig.2 from the main
text. For small values of µ, the strategy S2 provides comparable rescue to S10, TFT.
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Supplementary Figure S4: Analysis of the Replicator-Mutator Equation I demonstrates an optimal µ (= µ1)
at which ALLC is stable in maximal frequency. Here we recreate Fig. 5 from main text with the parameters
b = 5 and c = 3. Upon comparing this Figure with Fig. 4 from the main text, we find that the maximal frequency
of ALLC in a stable equilibrium is lower when the cost of cooperation is higher. The optimal mutation rate, µ = µ1

is also higher compared to the b = 5, c = 1 case.
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Supplementary Figure S5: Analysis of Replicator-Mutator Equation II demonstrates an optimal µ (= µ3)
at which ALLC is stable in maximal frequency. Here we recreate Fig. 5 from main text, but considering the
dynamic (D2) with the parameters b = 5 and c = 1. Here µ4 := (b− c)/(2b). We observe that the phase-portraits
from this dynamic are qualitatively similar to that of dynamic of Replicator-Mutator I, (D1) as shown in Fig. 5
from main-text or Fig. S4 here.
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Supplementary Figure S6: Performance of the 16 deterministic memory-1 strategies as rescue strategies
when the underlying game is the Prisoner’s dilemma with (R,S, T, P ) = (3, 0, 5, 1). Here we recreate Fig. 2
from main text but with the underlying game as a Prisoner’s dilemma that is not a donation game. The payoff for
the first player at the outcomes CC, CD, DC and DD are R,S, T and P respectively. We use a population size of
100 and mutation threshold k = 1.
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Supplementary Figure S7: Performance of the 16 deterministic memory-1 strategies as rescue strategies
when the underlying game is the coordination game. We take (R,S, T, P ) = (5,−20, 4.9, 4) as the stage
game payoffs. Here we recreate Fig. 2 from main text but with the underlying game as a coordination game.
The payoff for the first player at the outcomes CC, CD, DC and DD are R,S, T and P respectively. We use
a population size of 100 and mutation threshold k = 1. We observe that, as a rescuer, Tit-for-Tat offers only
a marginal improvement in the restoration chances of ALLC — and in some cases, it even performs worse. In
contrast, strategies like GRIM and even ALLD prove effective at eliminating the invading ALLD. This suggests
that under a back-mutation mechanism, as shown in Supplementary Figure S3, these strategies would be highly
successful in restoring the ground state.
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Supplementary Figure S8: The performance of the 16 deterministic memory-1 strategies as rescue strategies
when the mutational scheme is not a step function but a linear function on the number of ALLD in the
population. We consider a linear mutation scheme where the probability of mutation from ALLC to X increases
linearly to the number of ALLD in the population.We choose a linear function that has µ = 0 when no ALLD is
present and µ = 1 when N − 1 out of N individuals are ALLD. The underlying game is a donation game with
b = 5 and c = 1. We take a population of size 100. In panel A we show the probability of absorption into the final
states for each deterministic memory-1 strategy as the rescue strategy. In panel B we compare the performance of
the linear mutational function with the step function. We plot the probability that the final state is ALLC for each
deterministic memory-1 rescue strategy, using black and grey bars to represent the results under a linear and a step
mutation function, respectively. For the step function we choose µ=0.5 and a trigger threshold k=1.
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Supplementary Figure S9: An example where reactive rescue strategies that limit cooperation with ALLC
outperform fully cooperative ones. Here we search for the best rescue strategy in the space of reactive strategies,
similar to Fig 3A in the main text. We choose a population of size N = 50, a mutation threshold, k = 1. The benfit
and cost of the underlying donation game are b = 5 and c = 1. (A) We make two independent searches for the best
rescue strategy. In the first search, the best rescue strategy is numerically searched among reactive strategies that
satisfy p = 1 (i.e., those that fully cooperate with ALLC in a direct competition). In the second search, the best
rescue strategy is numerically searched in the entire space of reactive strategies [0, 1]2. The results of the latter are
identical to those in Fig 3A of main text. We observe that when we restrict the search of best rescue strategy to
reactive strategies with p=1, each time the best rescue strategy turns out to be tit-for-tat, i.e., has q = 0. However,
when the search is performed in the entire space, the best rescue strategy does not necessarily have p = 1 (or
q = 0). (B) We compare the performances of the best rescue strategies across these two independent searches. We
find that the best strategies from the second search always perform at least as well as the best strategies from the
first search. (C) Finally, we compare the performance of the best reactive rescue strategy and the best memory-1
rescue strategy that we obtain from the respective searchers. We find that the best memory-1 rescue strategies,
which fully cooperate with ALLC and fully defect with ALLD perform atleast as good (sometimes better) than the
best reactive rescue strategy.
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Supplementary Figure S10: Comparing the rescue performance of tit-for-tat with the performance of the
optimal rescue strategy. In panels A, B and C, we compare the perfromance of tit-for-tat as a rescue strategy
to the performance of the optimal memory-1 rescue strategy, which we find from our search process. We do this
comparison for a range of parameter values of the finite population model. In panel A, we vary the benefit-to-
cost ratio of the donation game, b/c and the conditional mutation probability µ from ALLC to X as we hold the
population size fixed to N = 50. In panel B, we vary the population size and the conditional mutation probability,
as we fix the benefit-to-cost ratio to 5. Finally in panel C, we vary the benefit-to-cost ratio and population size as
we fix the mutation rate to 0.5. To compare, we report the relative difference in the fixation probability of ALLC
(in percentage), when TFT is the rescuer versus when the optimal rescue strategy is the rescuer. To compute the
relative difference, we divide by the fixation probability of ALLC, when the optimal rescue strategy is the rescuer.
In panel D, we similarly compare the performance of Tit-for-Tat with that of the optimal rescue strategy, identified
without restriction to a specific strategy space. This analysis mirrors the approach used in Figure 4 of the main text.
The optimal rescue strategy fully cooperates with ALLC, fully defects against ALLD, and achieves an arbitrary
payoff r when playing against itself. Parameters for panel D: N = 50, b/c = 5 and mutation threshold, k = 1.
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