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The ultimate goal of research on the evolution of
cooperation could be conceived as finding a method
for stabilizing strategies that always cooperate, that
never deviate from cooperation, that never exploit,
and never retaliate, because all such activities are
inherently problematic. The hope of achieving this
cooperative utopia seems unjustified, especially in
the context of direct reciprocity, which relies on
the principle that cooperative partner strategies
succeed in defending themselves by using moderate
retaliation. Here, we propose a dynamic that goes
a certain way towards achieving the desirable
goal. In the ground state, the population consists
of individuals that use always-cooperate (ALLC).
Occasionally defectors, in the form of always-
defect (ALLD), invade the population. Their presence
triggers a mutation from ALLC to another strategy,
X, with the aim to avert the take-over of defectors.
In the absence of X, ALLD dominates ALLC, but in
the presence of X, the invasion attempt might fail and
subsequently the ALLC ground state can be restored.
We study this mutation-selection process in finite and
infinite populations. We identify the properties of the
ideal rescue strategy. We derive an optimum mutation
rate that maximally stabilizes ALLC.

1. Introduction

Cooperation is a central theme in the theory of evolution
[1-5]. Cooperators are individuals who pay costs to
benefit others. Defectors, by contrast, pay no costs and
distribute no benefits. Mechanisms for the evolution
Electronic supplementary material is available
online at https://doi.org/10.6084/m9.figshare.

.7879882.

of cooperation are interaction structures that allow
natural selection to favour cooperation over defection
[2,3,6-12]. Here, we focus on the mechanism of direct
reciprocity [1,13-19]. There are repeated encounters
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between the same two individuals. If I cooperate now, I might induce your cooperation later. If I
defect now, I might evoke your retaliation. Therefore, in an iterated Prisoner’s Dilemma, defection
is no longer the only Nash equilibrium [20].

Much of the research within direct reciprocity deals with the question of how to play the
repeated game. The search is for strategies that do well. Recently, strategies have been separated
into two large categories: rivals and partners [18,21]. Rivals always want a higher payoff than
their co-player. They insist on winning. Examples of rivals are always defect (ALLD) or so-called
extortionists [22]. Partners accept that, in some situations, their payoff will be lower than that of
the co-player, but they incentivize their co-players to cooperate with them: when playing against
a partner strategy you maximize your own payoff when you fully cooperate. Partners are focused
on sharing. Examples of partners are generous tit-for-tat [23] and win-stay, lose-shift [24]. Broadly
speaking, rivals destroy but partners facilitate evolution of cooperation.

When it comes to human behaviour, an inherent problem of direct reciprocity is the need
to retaliate against defection. A genuinely good person may be reluctant do to so. But if
everyone uses unconditional cooperation then the mechanism of direct reciprocity fails to operate.
In this paper, we explore the question of whether it is possible to stabilize a population of
always cooperate (ALLC) individuals. We explore the following setting. In the ground state,
the population consists only of ALLC players. Occasionally, the ground state is challenged by
invasion of defectors. For simplicity but without losing generality, we assume the challengers use
the notorious ALLD strategy. When the invasion occurs a ‘danger signal’ triggers the mutation
from ALLC to a rescue strategy, X. The hope is that in the presence of X the invasion attempt will
fail and the ground state will be restored.

In the following, we study both stochastic and deterministic evolutionary dynamics
of the resulting mutation selection system. First, we study the stochastic evolutionary
process by considering a finite population model. In this model, ALLC individuals
probabilistically generate a mutant offspring X only when the number of defectors surpasses
a certain threshold in the population. Our goal is to compute the likelihood that the
ALLC population is restored once a single ALLD mutant attempts to invade it. We
examine the effect of the conditional mutation probability, i, on the restoration probability
and characterize properties of the best rescue strategy, X. Later, we study deterministic
evolutionary dynamics by considering infinite population size. Here, we find an optimal
mutation rate, u1, for which ALLC achieves maximal frequency in stable coexistence with X
and ALLD.

2. The repeated donation game and strategies

(a) Description of the game

The donation game involves two players, each having two possible actions, cooperation, C,
or defection, D. When an individual cooperates, they incur a cost ¢ to provide a benefit b
to the co-player. We have b > c> 0. When an individual defects, they provide no benefit and
thereby incur no cost. The donation game is a special case of the Prisoner’s Dilemma. For the
four possible outcomes of the game, the payoffs for the row player are given by the payoff

matrix
C D

C (b—c —c
< ( , 0). 2.1)

In the repeated donation game, players continue with probability § after each round. We
focus on the limit § — 1, which represents the infinitely repeated game. We assume that players
make rare implementation errors: they sometimes play D when they intend to play C and vice
versa [15].
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(b) Strategies

A strategy is defined by the probability to cooperate in the first round and by the probabilities
to cooperate after every sequence of past play. Here, we study strategies that base their decision
on the outcome of the previous round, which are the so-called memory-1 strategies [15]. Since
we consider the infinitely repeated game with implementation errors, we can ignore the initial
move [15,25].

Therefore, a memory-1 strategy is defined by four parameters, (pcc, pcp, Ppc, Ppp), which
denote the probabilities to cooperate if the outcome of the previous round was CC,CD,DC
or DD, respectively. In this notation, the first letter (C or D) denotes the move of the focal
player, while the second letter (C or D) denotes the move of the other player. A strategy is
called deterministic if all probabilities are binary variables taking the values 0 or 1. There are 16
deterministic memory-1 strategies. They include ALLD (0, 0, 0,0), GRIM (1,0, 0, 0), win-stay, lose-
shift (1,0,0,1), TFT (1,0,1,0) and firm-but-fair (FBF) (1,0,1,1), which is also known as Forgiver
and ALLC (1,1,1,1).

(c) Computing expected payoffs

The first step in calculating expected payoff per round for the two players is to determine how
often the four states—CC, CD, DC and DD—occur based on the strategies that the players adopt.
Earlier work [25,26] details the method for computing the stationary distribution of the four states,
provided both players employ memory-1 strategies. Due to rare implementation errors, there is a
unique stationary distribution, (vcc, vep, vpe, vbp) [25,26]. The expected payoff of the focal player
is then given by w1 = vcc (b — ¢) + vep(—¢) + vpe(b) + vpp(0). We use 7 (s;, s)) to denote the payoff
of the player, who adopts the strategy s; against her co-player who adopts s;.

The payoffs when both players employ deterministic memory-1 strategies are given in table 1.
The effect of implementation error is noticeable when one observes the payoff that the strategy
TFT (S10 in table 1) obtains against itself. In a game with no errors, two TFT players, who start
with cooperation, continue to cooperate in every round and receive an expected per-round payoff
of b — c. However, with errors, one can derive that two TFT players visit each of the four states
equally often: their stationary distribution is (0.25,0.25,0.25,0.25). As a result, they receive an
expected payoff of (b — c)/2. Therefore, in the presence of noise, TFT fails to achieve the payoff
for full cooperation. Consequently, generous tit-for-tat (GTFT) (1,4, 1, g) for some g > 0 is a much
better strategy, because it has the ability to forgive [15].

3. Evolutionary dynamics in a finite population

Consider a finite, well-mixed population of size N, whose individuals interact in a repeated
donation game. We study evolutionary dynamics in a birth—death process [27] with mutation. In
the beginning, the population is only composed of individuals who adopt ALLC. We call this the
‘ground state” of the population. We challenge the ground state by switching the strategy of one
individual to ALLD. We are interested in studying the evolutionary dynamics and the final state
of the process that is initiated with this alteration. Below, we describe in detail the evolutionary
process that unfolds.

(a) Description of the birth—death process with conditional mutations

At each step of the birth-death process, first an individual is chosen randomly from the
population, with probability proportional to its current fitness, to produce an offspring. In the
second step, a second individual, selected uniformly at random to die. Thereby, the population
remains at a constant size. During the birth event, ALLD individuals reproduce without mutation;
they always produce ALLD offspring. However, when an ALLC individual reproduces, the
offspring is ALLC with probability 1 — j., but adopts strategy X with probability j.. Individuals
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who adopt X reproduce without mutation. We allow X to be any memory-1 strategy. Later, we
also consider back mutation from X to ALLC.

At any point in time, the state of the population is specified by three numbers (N¢, Np, Nx),
denoting the abundance of ALLC players, ALLD players and X players. The total population size,
N =N¢ + Np + N, is constant.

The mutation probability from ALLC to X, i, depends on the number of ALLD players in the
population, Np. In particular, we consider

if Np >k,
ne=15 0= (3.1)
0 ifNp <k

Thus, ALLC produces mutants only if Np is greater than or equal to k. We consider k > 1 in
our analysis. ALLC does not mutate if Np = 0. This threshold mutation rate represents a specific
choice. Later, we consider a mutation rate that is a linear function of Np.

We illustrate the evolutionary process in figure 1. For u = 0, the stochastic process reduces to
the fixation dynamics of an ALLD mutant in an ALLC population (see figure 1A). In this case,
the population is always composed of at most two strategies, ALLC and ALLD, and there are
two absorbing states, (N,0,0) and (0,N,0). For u > 0, the population is composed of at most
three strategies, ALLC, ALLD and X. Since mutations only occur when ALLD is present in the
population, the population stabilizes once it returns to the ground state, (N, 0, 0). Likewise, since
reproductions by ALLD and X are never subject to mutations, the population also stabilizes
when it reaches the homogeneous states (0, N, 0) or (0,0, N). Thus, there are three final states of
the stochastic process that begins from (N —1,1,0): the ground state, (N, 0,0), the state where
everyone adopts ALLD, (0, N, 0) and the state where everyone adopts X, (0,0, N) (see figure 1B).

(b) Fitness of strategies in a population

In the birth-death process, individuals are selected for reproduction with probability proportional
to their current fitness. We assume that fitness is a positive quantity that monotonically increases
with average payoff. We compute the average payoff of a strategy i (denoted I7;), by weighing its
expected per-round payoffs against other strategies, 7 (i, -), with the probability of meeting them
in the well-mixed population. For the population state N := (N¢, Np, Nx), we obtain the payoff
values

— maX{NC B 1/0} ND NX
ne)=6-0 (TRETED) <o (92)) a0 ()
HD(N)=b<NN_C1) +n(D,X)(NN_Xl) o2
and Mx(N)=7(X,C) (NN_C1> +7(X,D) (NN_Dl> + (X, X) (%) .

We assume that an individual’s fitness is an exponential function of its average expected payoff
[28]. That is, an individual with strategy i in the population state N has the fitness F;(N) = ePTIN),
Here B is the intensity of selection. We consider g =1 from here onwards.

(c) Computing absorption probability into final states

When mutations are absent (1 = 0), the evolutionary process is a discrete-time Markov chain in
the state space

S,u=0={(Nc,N —Nc,0)|Nc €{0,1,..,,N}}. (3.3)
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(A) Evolutionary dynamics without conditional mutations | (B) Evolutionary dynamics with conditional mutations (ALLC to X)
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Figure 1. Two evolutionary dynamics involving strategies of the repeated donation game. For both evolutionary dynamics
illustrated in this figure, we consider the same starting point. The population that evolves is finite, well-mixed and initially
composed of individuals who use the strategy to always cooperate (ALLC) in an infinitely repeated donation game. We call this
population the ground state. In this population, a single individual switches to the strategy to always-defect (ALLD). This is
the shared starting point of the two distinct dynamics we study from here onwards. (A) The simple birth—death process: In this
process, first, an individual is randomly selected from the population to give birth, with selection probability proportional to its
fitness. Fitness of an individual is defined as the exponential of the expected per-round payoff of its strategy. Next, an individual
is selected uniformly at random from the remaining population members to die. The process is repeated from first step. This
dynamic results in two possible final states for the population; the initial ground state and the state in which all individuals
adopt ALLD. (B) Birth—death process with condtional mutations, in an alternate dynamic, we study the birth—death process but
with the exception that mutations may happen during the birth event. In particular, with probability 1, an ALLC individual
gives birth to an offspring that adopts strategy X in the repeated game. With probability 1 — 1., it gives birth to an individual
that adopts ALLC. The exact mutation probability depends on the number of ALLD individuals in the current population. In this
model, mutations occur only if number of ALLD individuals exceed a certain threshold, k (> 1). Reproductions from ALLD and
Xare not subject to mutations. This dynamic has three final states; the ground state, the state in which everyone adopts X, and
the state in which everyone adopts ALLD.

The probability that the process ends in state (0, N, 0), which means all players have adopted
ALLD, after beginning from state (N — 1,1, 0) is given by [27]

1
= N1k —e—(b/N-D '
1+ l_[j:1€ c=(/N-1)

oD (34)

With the complementary probability, pc :=1 — pp, the process ends in the other final state,
(N, 0,0) wherein everyone adopts ALLC.
When mutations are possible, 1 > 0, the Markov process covers the bigger state space

S:={(N¢,Np,Nx)€1{0,1,2,...,N}* | Nc + Np + Nx =N}. (3.5)
In addition to (N,0,0) and (0,N,0), the state in which everyone adopts X, (0,0,N), is also

an absorbing state. We define pc, pp and px as the probabilities that the process finishes in
(N,0,0),(0,N,0) and (0,0, N), respectively, after it begins from state (N — 1,1, 0).
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To explicitly compute these absorption probabilities, we first derive the transition matrix T
associated with the Markov process (see equation (7.1) in Methods). Then, we define submatrices
Q and R of T. The elements of submatrix Q only contain transition probabilities between non-
absorbing states in S. It is a square matrix of size |S| — 3. The submatrix R contains the transition
probabilities from non-absorbing states to absorbing states. It is a matrix of size (|S| — 3) x 3. The
probability that the process is absorbed in state s5, when it begins from the non-absorbing state,
SNA is given by the element corresponding to the state-pair (sya, Sa) in the matrix

B:=(1I1- Q) 'R. (3.6)
Here, I is the identity matrix. The absorption probabilities are thus,

pc = B(N-1,1,0),N,0,0)),
oD = B(N-1,1,0),(0,N,0) (3.7)

and Px = B(N=1,1,0),00,0,N))-

4, Results

(a) Rescue by deterministic memory-1strategies

To study whether conditional mutations save a resident ALLC population against an invasion by
ALLD, we begin by examining the case where X is a deterministic memory-1 strategy. We first
study the dynamics in which mutations are triggered whenever ALLD is present (k =1).

We find that among deterministic memory-1 strategies, TFT provides the best defense against
an ALLD invasion (figure 2). While conditional mutations to strategies S, Sg, Sg and S14 suppress
an ALLD invasion, they do not restore the ground state as effectively as TFT because these
rescue strategies themselves out-compete ALLC. Once ALLD is eradicated and mutation stops,
the population, which is now composed of X and ALLC, may favour fixation of X over ALLC.
For example, this is the case when the rescue strategy X is win-stay-lose-shift [24], S¢. By contrast,
when X is TFT then the fixation of ALLC is favoured, because it weakly dominates TFT in the
infinitely repeated game, which we consider.

The only other deterministic strategy that displays comparable rescue property is Sq11. This
strategy behaves identically to TFT with the exception that it cooperates if both players defect in
the last round—Ileading to its name firm-but-fair [25], FBE. This strategy is also known under the
name Forgiver [29]. ALLC also weakly dominates FBE. But since FBF has a higher self-payoff than
TFT (see table 1), it has higher fitness than TFT in any mixed population with ALLC. As a result,
FBF contributes to a weaker rescue effect than TFT.

For both TFT and FBF, we observe that rescue is most successful for intermediate mutation
rates. Although a high mutation rate substantially reduces the chances that ALLD takes over, it
risks producing a residual population in which the abundance of X is much greater than that of
ALLC. In this case, a return to a homogeneous ALLC ground state is unlikely.

This particular problem disappears if we consider a simple extension of our stochastic process:
Once ALLD is eliminated, a back mutation from X to ALLC offspring with probability pp,ck(> 0)
is triggered. Now the process is guaranteed to end up in the ground state of only ALLC once
ALLD becomes extinct. Interestingly, we observe that the strategy So—to cooperate only after
DC—provides marginally better rescue than TFT in this process as long as the mutation rate y is
not too high (see electronic supplementary material, figure S3).

We note that the mechanism of conditional mutation backfires against ALLC when the rescue
strategy is poorly chosen. For some X, the odds that ALLD takes over increases in comparison
to the case where ALLC never mutates (u = 0). For the specific parameters we adopt in figure 2,
this occurs when X is S5 (anti TFT), S7 (cooperate always, except after mutual cooperation), S13
(cooperate always, except after CD) or Sp (ALLD itself).
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Figure 2. Among all deterministic memory-1strategies, mutations to TFT result in maximal stabilization of ALLC. We consider
k = 1for the stochastic process described in figure 1B. That s, mutations from ALLC to X begin when thereis a single ALLD mutant
in the population and stops only when the population reaches a state in which ALLD is absent. For each subplot, we consider a
fixed memory-1strategy as X, the strategy to which ALLC conditionally mutates with probability 1. We plot the distribution of
the population’s three possible final states—where everyone adopts ALLC (green), X (orange) or ALLD (red)—as we vary .
We present this for all 16 possible deterministic memory-1strategies as X. Here, a deterministic memory-1strategy is represented
by a four-digit string of Os and 1s in the form: p pcopocpon. These elements denote the probability to cooperate in around when
the outcome of the previous round is CC, (D, DC or DD, respectively. The likelihood of restoring the ground state is the highest
when ALLC conditionally mutates to TFT (row 3, column 3) at a rate which is optimally high. For this figure, we take a population
with 100 individuals. The benefit, b and cost of cooperation, ¢ in the donation game are 5 and 1, respectively.

We also study the case where rescue response is delayed (k = 25). In this case, mutations only
occur when the number of ALLD individuals exceed the threshold, k = 25. We summarize the
result in electronic supplementary material, figure S2. While rescue outcomes are always worse
compared to k=1, TFT still acts as the best rescue strategy, among all deterministic memory-1
strategies. Importantly, strategies that performed reasonably well in eradicating ALLD earlier,
now do poorly. In fact, for most X, outcomes are almost identical to the case where mutations
remain absent (u = 0). For our parameters, TFT is the only strategy that brings the restoration
probability close to one.

We also examine how deterministic memory-1 strategies perform as rescue strategies under
an alternative mutational scheme, where the mutation probability is not a step function of the
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number of ALLD individuals, but increases linearly. Specifically, we consider a mutation rate
defined by t = Np/(N — 1). In this case, the probability of mutation from ALLC to X is zero when
ALLD is absent, increases linearly with the number of ALLD in the population, and reaches one
when N — 1 out of N individuals are ALLD. The results are presented in electronic supplementary
material, figure S8. Again, we find that TFT is the best rescue strategy among deterministic
memory-1 strategies (see electronic supplementary material, figure S8A). We also compare the
performance of the linear mutation function with the step function (electronic supplementary
material, figure S8B). For this comparison, we used a step function of ©=0.5 at k=1. For
most rescue strategies, the linear mutation function performed better. But for TFT, there was
no notable difference between the two, and for FBF, the step function performed considerably
better.

(b) Rescue by reactive strategies

Reactive strategies respond to the co-player’s most recent move [15]. They are a two-dimensional
subspace of memory-1 strategies. A reactive strategy S(p, q) cooperates with probability p after co-
player cooperates, and cooperates with probability g after co-player defects. That is, for a reactive
strategy S(p, q), we have pcc = ppc =p and pcp = ppp = . For example, TFT is a reactive strategy
with (p, q) = (1,0). We perform numerical computations to identify the best rescue strategy among
the reactive strategies (see figure 3A). As before, we identify that rescue is most successful for
intermediate mutation rates, j1. In addition, best rescue is performed by a reactive strategy that
has p~1, and g~ 0. Those strategies are close to TFT. The values of p and g for the best rescue
strategy depend on p. In particular, for some values of u (these are © =0.4,0.5 and 1 in figure 3A),
the best rescue strategy is exactly TFT.

(c) Rescue by memory-1strategies

We search for the best rescue strategy in the entire memory-1 space, which is given by the
hypercube [0, 1]*. The details of our search process are described in Methods. The findings are
summarized in figure 3B. We observe that the best rescue strategy has the form (1, pcp, ppc, 0).
Unlike the best rescue strategy in the reactive space, here the best rescue strategy always fully
cooperates with ALLC (pcc =1) and fully defects with ALLD (ppp = 0). The numerical values
of pcp and ppc depend on u and the remaining model parameters, which are b=5, c=1 and
N =50 (see figure 3B). We also plot the self-payoff of the best memory-1 strategy as function of
the mutation rate, u (see figure 3B). For low values of p, the self-payoff decreases, but for larger
values it increases again.

(d) Search for the ideal rescue strategy

Let us now search for the ideal rescue strategy but independent of any constraints that are
imposed by specific strategy spaces. The performance of a rescue strategy, X, depends on five
numbers: (i) the payoff that X receives from ALLC, (ii) the payoff that X receives from ALLD, (iii)
the payoff that ALLC receives from X, (iv) the payoff that ALLD receives from X and (v) the payoff
X receives from itself. It is evident from the search within the space of memory-1 strategies that
the optimal rescue strategy, X, fully cooperates with ALLC while fully defecting against ALLD.
Hence, the first four numbers must be: (i) b — , (ii) 0, (iii) b — ¢, (iv) 0. The only quantity that needs
to be optimized is the payoff X receives from itself, which must lie in the interval [0, b — c].

Our results are shown in figure 4B. If mutations are triggered by the presence of a single ALLD
individual, k =1, the optimal self-payoff of X decreases with mutation rate, 1, up to a certain
point, after which it begins to increase. There are two opposing effects. A high self-payoff of X
makes it more likely that ALLD becomes extinct. But a high self-payoff of X makes it harder
for ALLC to reach fixation after ALLD has become extinct. For small w, the first effect is more
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Figure 3. In the reactive memory-1space, the best rescuers are geometrically close to TFT, whereas in the full memory-1space,
best rescuers have the discriminating property: they fully cooperate with always cooperate and fully defect with always defect.
We perform numerical computations to identify the best rescue strategy in the space of reactive memory-1 strategies (A) and
in the space of all memory-1strategies (in B). (A) A reactive memory-1strategy (p, g) responds solely to co-player’s most recent
action. It cooperates with probability p after co-player cooperates, or with probability g after co-player defects. That is, pcc =
poc = p and pey = ppp = ¢. We examine 500 x 500 reactive memory-1 strategies uniformly spaced in [0, 1)%. For each X,
we compute the restoration probability of the ALLC population. As we vary ¢, we plot the maximum restoration probability
obtained from 500 x 500 choices for X, along with the corresponding strategy X that yields this maximum. We find that ALLC
restoration probability is highest when 14 is neither too high nor too low. Furthermore, the best rescue strategy is geometrically
closeto (p, q) = (1,0), TFT. In fact, at .« = 0.4, 0.5 and 1, the best strategy is exactly TFT. (B) We perform a search, similar to a,
for finding the best rescue strategy in the entire memory-1space (for more details on the search process, see Methods). The best
rescue strategy fully cooperates with ALLC (pc = 1) and fully defects with ALLD (ppp = 0). The strategy components p¢p and
poc of the best rescue strategy determines its self-payoff, which is crucial in the rescue dynamic. We consider k =1, i.e. rescue
mutations occur whenever ALLD is present, and a population of size N = 50. All other parameters remain consistent with those
infigure 2.

important. For large u, the second effect is more important. The optimal-r curve aligns with the
self-payoff of the best memory-1 rescue strategy of figure 3B, indicating agreement between the
two searches.

When rescue is delayed, k = 10, the optimal self-payoff, r, is higher. In this case, opposing the
spread of ALLD is of primary importance.

5. Evolutionary dynamics in the infinite population model

We now study the evolutionary dynamics of rescue in the limit of infinitely large population
size. In the absence of mutation, the standard approach is given by the replicator equation
[30-33]. In the presence of mutation, the standard approach is given by the replicator-mutator
equation [31,34-37], which we use here. We analyse two versions of the replicator-mutator
equation: one in which mutations occur during replication and the other in which mutations
occur independently of the replication process [34,38—40]. In the main text, we focus on the latter
version. In the electronic supplementary material, we demonstrate that these two approaches
produce qualitatively similar outcomes for our context.

In particular, we study the dynamics of a three-strategy system with ALLC, TFT and ALLD.
Their relative frequencies are x, y and z, respectively. We have x + y + z = 1. Mutations from ALLC
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Figure 4. Role of self-payoff of discriminating strategies in the rescue of ALLC. (A) We consider a strategy X that fully cooperates
with ALLG, fully defects with ALLD, and receives a payoff of r against itself in an infinitely repeated game, where r € [0, b —
cl. In Methods, we demonstrate that an example of X is TFT in an environment where two types of implementation errors—
specifically, cooperating instead of defecting and defecting instead of cooperating—are rare, independent, and have different
probabilities. We are interested to study how r, the self-payoff of X affects the rescue of ALLC. (B) To this end, we numerically
compute the probability that the ALLC ground state is restored as we vary r and the conditional mutation probability from ALLC
toX, . We study two cases, k = 1and k = 10.In k = 1, mutations occur whenever ALLD is present. In k = 10, mutations occur
only when the number of ALLD in the population is at least 10. A blue line denotes the values of r that maximize the probability
of ground state restoration for each value of 1¢. The white dot in each subplot denotes the pair (14, r) that attains the highest
restoration probability of ALLC. The lower end of the colour scale denotes the probability of ALLC restoration when mutations
do not occur. All other parameters remain consistent with those in figure 3.

to TFT occur at a fixed rate uu. Evolutionary dynamics are given by

d _
=P —ux
d _
diz =y(fy —f) + nx, (D1)
dz -
and Fri z(fz — f).

Here, fy, fy and f; represent frequency-dependent fitness of the three types. We have

fe=blx+y)—c
fy=0b—=0)x+y/2) (5.2)
and fz=Dbx.

The average fitness is f = xfy + yfy + zf- = (b — o)(x + xy + y?/2). The equation is defined on the
simplex Ay, which is the set {(x,y,z) € R3|x+ y+z=1,0<x,y,z<1}. The simplex A is invariant
under the dynamics given by equation (D 1). Any point in this set satisfies x + i + z = 0. Solutions
that begin in this set, remain in this set forever. The corners of the simplex, (1,0,0),(0,1,0)
and (0,0, 1), represent the homogeneous populations of ALLC, TFT and ALLD, respectively. In
proposition 1 of electronic supplementary material, we characterize all rest points of (D 1) that
lie in the simplex. In proposition 2, we characterize the conditions under which each rest point is
asymptotically stable.

As shown in figure 5A, the evolutionary dynamics depend on the value of the mutation
rate, . For i =0, the corners of the simplex are saddle points. In addition, there is an interior
centre, which is surrounded by periodic orbits [41]. In the absence of TFT, ALLC is dominated by
ALLD: therefore any mixed population of ALLC and ALLD converges to a homogeneous ALLD
population.
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Figure 5. Analysis of the infinite population model with TFT as a rescuer shows an optimal 1« (= 111) at which ALLCis stable
in maximal frequency. (A) The infinite population model demonstrates four unique phase portraits depending on the value of
. At . = 0, the dynamic demonstrates a cyclic dominance between ALLC, TFT and ALLD. There is an interior fixed point that
acts as centre for periodic orbits. When 0 < 1 < 144, the dynamic produces a stable coexistence between all three strategies
and an unstable coexistence between ALLC and TFT (see equation (5.3) for an expression of £¢; in terms of b and c). Next, when
W >y but o <y =: (b — ¢)/2, the dynamic has a single stable rest point, and in this rest point only TFT and ALLC are
present. Finally, for .« > 1, the only stable rest point is the homogeneous TFT population. In the last two cases, the stable
rest point is the final dynamical fate of all populations that are composed of ALLC and ALLD. (B) We show the frequency of ALLC,
TFT and ALLD at rest points, which are either in the interior of the simplex or at the ALLC—TFT edge of the simplex. We mark the
frequencies with dashed lines if it corresponds to an unstable rest point and a solid line if it corresponds to a stable rest point. The
maximum frequency of ALLC at a stable rest pointisat .« = 1. (C) We show how the optimal mutation rate y.; varies with cost
of cooperation ¢ while we keep the benefit of cooperation b fixed. For this figure, we take the benefit, b and cost of cooperation,
cin the donation game as 5 and 1, respectively (for comparison, we make a similar figure in electronic supplementary material,
figure S4forb =5, ¢ =3).

We find two critical mutation rates, 111 and uo. They are given by

c? c?
—bf1- 1+ S|+ S .
j=b ] Rl (5.3)

b—c
5

and

Uy = (5.4

We show in electronic supplementary material that b > ¢ > 0 implies that 1 < uo.

If 0 < < 1, there is an unsaturated fixed point on the edge between ALLC and TFT. This
saddle point, which attracts all initial conditions where ALLD is absent, can be invaded by ALLD.
In addition, there is an interior equilibrium which is asymptotically stable. All initial conditions
with x>0 and z > 0 converge to the interior equilibrium. All initial conditions with x =0 and
z > 0 converge to the TFT corner.

If 1 < p < po, the fixed point between ALLC and TFT is saturated and asymptotically stable.
All initial conditions with x> 0 converge to this boundary equilibrium. There is no interior
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equilibrium. All initial conditions with x =0 and z > 0 converge to the TFT corner. For all initial
conditions with z < 1, ALLD becomes extinct.

If up < i, the corner point of TFT is asymptotically stable. All initial conditions with x > 0 or
y > 0 converge to a population that is homogeneous in TFT. For all initial conditions with z < 1,
ALLD becomes extinct.

In figure 5B, we show the equilibrium frequencies of the three strategies as functions of the
mutation rate . We observe that the equilibrium frequency of ALLC attains a maximum for
= 1. The maximum equilibrium abundance of ALLC for u > 0 is given by

202+ ) = 2bc + B - P+ D)

e (5.5)

Xmax =

Therefore, the deterministic system has an optimum mutation rate that maximizes the

abundance of ALLC. In the stochastic system, we also found that intermediate mutation rates
were optimal. We also note that > p1 guarantees the extinction of ALLD.

6. Discussion

In this paper, we have shown that a population of ALLC can be protected against invasion
of defectors by mutating toward a rescue strategy. We imagine a situation where the presence
of defectors triggers a warning signal that activates the mutation. We examine the resulting
mutation-selection dynamics for both a stochastic system, which describes finite population
size, and a deterministic system, which describes infinite population size. For both systems,
we assume that individuals in the population are randomly paired to play infinitely repeated
donation games. Our work adds to the larger body of literature, which studies the role of
mutation-generated diversity in the context of evolution of cooperation [42—48].

We have focused on the donation game as it offers the simplest framework for illustrating
the role of rescuing strategies. The donation game is widely used for the study of direct
reciprocity [16,25]. A donation game is a special case of Prisoner’s Dilemma [2], which is the
most stringent game for studying evolution of cooperation [3,9]: while mutual cooperation yields
higher payoffs for both players than mutual defection, cooperation is not the individually rational
choice. Our framework is not limited to the donation game and can readily be applied to other
scenarios. In electronic supplementary material, figures S6 and S7, we present the performance
of the 16 deterministic memory-1 strategies as rescuers of an ALLC population, when the
underlying game is Prisoner’s Dilemma or a Stag Hunt. In the Prisoner’s Dilemma (see electronic
supplementary material, figure S6), TFT remains the best rescue strategy among deterministic
memory-1 strategies. In the Stag-Hunt game (electronic supplementary material, figure S7), no
deterministic memory-1 strategy reliably restores the ALLC ground state, as the rescue strategy
often takes over the population. For example, when GRIM is used, ALLD is suppressed at
high mutation rates, but the population is more likely to absorb into the GRIM state than the
ALLC state. In such games, employing back-mutations, as previously discussed, may enable the
recovery of the ALLC population.

For the stochastic system, we have searched for the optimal rescue strategy in the space of
memory-1 strategies. Among deterministic and reactive memory-1 strategies, TFT and TFT-like
strategies serve as the best rescuers (figures 2, 3A). In the full, stochastic memory-1 space, the best
rescue strategy shares key properties with TFT: it fully cooperates with ALLC but fully defects
with ALLD (see figure 3B). For a comparison between TFT and the optimal rescue strategy see
electronic supplementary material, figure S10. For such a strategy, its self-payoff determines its
efficiency to rescue the ALLC population (see figure 4).

For the deterministic system, we study a replicator-mutator equation, considering the
strategies ALLC, ALLD and TFT. We examine how the rate of mutation from ALLC to TFT, u,
affects the three-strategy dynamic (see figure 5). Our analysis reveals a critical mutation rate j1
above which ALLD is guaranteed to perish from any mixed population. Furthermore, 11 is also
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optimal: at s =1, ALLC attains maximal abundance at an asymptotically stable equilibrium.
While we have thoroughly explored TFT as the rescue strategy in the infinite population model,
future work will focus on extending the analysis to a more general class of rescue strategies
characterized by the following properties: the strategy fully cooperates with ALLC, fully defects
against ALLD, and achieves an arbitrary payoff r € [0,b — c] when playing against itself in direct
competition.

Most approaches to evolution of cooperation by direct or indirect reciprocity conclude that
cooperation can only be sustained by populations of conditional cooperators (discriminators)
[17,24,35,49-54]. Our paper suggests an alternative role for discriminators in evolution. In the
context of direct reciprocity, we demonstrate their success as temporary helpers: they only emerge
when unconditional cooperators (ALLC) need help to fight off an invasion of defectors. After
the defectors are eliminated, the discriminators naturally become extinct thereby restoring the
ALLC population. This mechanism of transient helpers is reminiscent of findings from other
models of evolution of cooperation—those not based on direct reciprocity—where type X assists
in eliminating type Z to protect type Y, but is ultimately eliminated by Y once its purpose is served
[55,56].

For our mechanism to succeed, it is important that ALLC dominates the rescue strategy, as this
increases the likelihood that, once defectors are eliminated, ALLC can outcompete the helpers and
reclaim the population. In our case, TFT, which is a highly effective rescuer, is dominated by ALLC
because of its inability to fully cooperate against itself in the presence of implementation errors.
In this sense, errors are not an impediment, as previously argued [35,49,51,57], but rather a critical
factor behind TFT’s role in helping to re-establish stable cooperation. In future works, it will
be valuable to explore how the rescue mechanism operates in the context of indirect reciprocity
[53,58-63] and in spatial games or evolutionary graph theory [64-67].

7. Methods

(a) Computation of transition matrix

For the finite population model, the transition matrix T collects probabilities of transition between
states in S. The probability of transition from state N, :=(i,j, N —i —j) to N :=(q,7,N —g — 1) in
a step is given by equation (7.1). In the following, we denote with p. the value that the mutation
function p.(Np;k) attains at state N,; as per equation (3.1). We express the transition probability
in terms of the fitnesses Fc, Fp and Fx of the three strategies at population state N;. We define
Fy:=iFc +jFp + (N —i —j)Fx.

iFe N—i—j . P
(1—Me)'E'T if(g,n=>0+1,))
iFC ] . s .
(1 = pe) - F, N if(gr)=0+1j-1)
Fo N—i—j . o
i if(q,1)=0,j+1)
(N—i—jFx j iFc j . ..
— =t U — = if (g, =G -1
In, o= F NTROR N (qn==0j-1) 71
fFp i : i1
N i) =(~1j+1
iFc i (N—i—jFx i . L
Mg, Nt E, N T@n=0-1)
1= Tn-s if (q,7) = (i,j)
s#N,
0 otherwise
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(b) Payoffs when TFT faces ALLC, ALLD or itself in the limit of rare implementation error

Consider the case where strategies are subject to implementation errors. An intended cooperation
is executed as defection with probability «e and an intended defection is executed as cooperation
with probability Se. Let us assume that these two types of error are independent. In this setting,
TFT or (1,0,1,0) is effectively TFT(«, B, ¢) = (1 — ag, Be, 1 — ag, Be). Similarly, ALLD and ALLC
are, respectively, ALLD(e, B, €) := (B¢, Be, Be, Be), and ALLC(e, B8,¢) := (1 —ae, 1 —ae, 1 —ae, 1 —
ag).

We consider «, 8 > 0 and compute the expected long-run payoffs for strategy s1(«, 8, €) against
strategy s>(o, B, ¢) in the limit ¢ — 0%. Here, s; and s, are TFT, ALLD or ALLC. Since these
strategies are effectively purely stochastic, the transition matrix W(e, 8, ¢), which collects the
probability of transition between the states CC,CD, DC and DD between consecutive rounds is
irreducible. The Markov chain therefore has a unique stationary distribution, which is given by
[68]

v, B,e)=(1,1,1,1)- (1+U-W(,B,¢) ", (72)

where I is the identity matrix of size 4 and U is a 4 x 4 matrix with all entries equal to 1. The
expected long-run payoff of s and s; in the limit of rare implementation errors is given by

T
. b—c —c b O
(ﬂl(Ol,ﬁ), 7'[2((1, .B)) _(Slif%’)lJr U(a/ ﬁ/g)) : (b —c b —c 0) . (73)
We compute the payoffs between ALLC, ALLD and TFT using this method. They are
ALLC ALLD TFT
ALLC /b-c —c b—c
ALLD b 0 0 ) (7.4)
TFT b—c 0 () p
a4+ B

For the case o = g (i.e. table 1), TFT earns (b — c)/2 against itself. So long as & + > 0, TFT can,
in principle, earn any self-payoff in the interval [0, — c]. In every calculation in this paper, we
have assumed o = B.

(c) Search process for the best rescue strategy in reactive space

For figure 3A, we perform numerical computations to identify the best rescue strategy, (p,q), in
the reactive strategy space, [0, 1]?. Specifically, we conduct a grid search over 500 x 500 uniformly
spaced points in [0,1]* and report the strategy that maximizes the restoration probability of the
ground state. For comparison, we perform an additional search restricted to rescue strategies with
p =1. We report the comparison in electronic supplementary material, figure S9.

(d) Search process for the best rescue strategy in memory-1space

For figure 3B, we perform numerical computations to identify the best rescue strategy in the
memory-1 space, [0, 1]*. For our computations, we consider the following parameters for our
model N (population size) =50, b, c (benefit and cost of cooperation) = 5, 1 and k (threshold of
conditional mutations) = 1. Our search process was three-step. In the first step, we performed
a 20 x 20 x 20 x 20 uniformly spaced grid-search in the memory-1 space, and looked for the
strategy that yielded highest restoration probability to ALLC. The best strategy from this first
step had pcc =1,ppp =0. In the second step, we performed a search in a subset of [0,1]*. In
this search, pcc was restricted to [0.95,1], ppp to [0,0.05] while pcp and ppc to [0, 1]2. We use
20 uniformly spaced points for pcc and ppp and 50 for pcp and ppc. The best strategy from the
second search also had pcc =1 and ppp = 0. In the third and final search, we fix pcc =1, ppp =0
and perform a 500 x 500 uniformly spaced search in [0, 1]? to find the optimal pcp and ppc.
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Appendix A. Analysis of the infinite population model

In propositions A.1 and A.2 below, we respectively characterize the fixed points of (D 1) and the
corresponding condition for the local stability of these fixed points. Proposition A.4 describes the
asymptotic extinction of ALLD from any mixed population.

Upon adding up the dynamical equations in equation (D1), we get X +y+z=0. The
triangular simplex A :={(x,y,2) € R3|x+ y+z=1,xy,2z>0} is thus invariant to (D1). If the
dynamics begins in A it remains there forever. We focus on (D 1) in this set. In addition, subsets
{(x,y,2) € Ay |z=0} and {(x,y,z) € Ay | x=0} of Ay are also invariant to equation (D1). These
subsets form two edges of the triangular simplex in which ALLD and ALLC are, respectively,
absent. Finally, the last edge, {(x,0,z) | x +z=1} is only invariant if u =0, otherwise not. The
proposition below characterizes all rest points of (D 1) in Aj.

Proposition A.1 (Rest points of (D1) in Ajp). For the replicator-mutator equation (D1), the
following are the rest points in Ay provided associated conditions (if any) are met.

1. xrr :=(0,1,0),
2.xaLLp = (0,0,1),
3. xarrc :=(1,0,0) if and only if u =0,

4, xg = (1 —‘/%, f—fC,O),zj“andonlyifO<u< %,

=) (c+pw)? o+ ct+ (b=0)(c+w)?* \ -
5. x = (2b(c2—u(h—c))’ St Sl Zb(cz—y,(b—c))) #f0=m<m.

where 1 is given by equation (5.3).

We include proofs of propositions in the section proofs in electronic supplementary material.
The above proposition lists five possible rest points of (D 1) in A,. The first three, xTpr, XALLD
and xap1c are three corners of the simplex. In these points, the population only consists of TFT,
ALLD or ALLC, respectively. The fourth rest point, xg, when it exists, is strictly in the interior of
the edge where ALLD is absent (i.e. both ALLC and TFT are present). Finally, the last rest point,
x1 when it exists, is strictly in the interior of A, (i.e. all strategies coexist). We note the following
degenerate cases: (a) when =0, xg = xaLLc, (b) when = (b — ¢)/2, xg = xrr. We also note that
1 < 2 := (b — c)/2 under the assumption that b > c > 0 (see end of proof of proposition 1). In the
proposition below, we characterize the dynamic stability of these rest points.

Proposition A.2 (Asymptotic stability of rest points of (D 1)). The following statements describe
the asymptotic stability of rest points of (D 1) with respect to perturbations in Ay. Each statement subsumes
that the relevant condition for the fixed point’s existence is met (from proposition A.1).

1. The rest points, XaLLD and XaLLC, lying at corners of Ay, are not stable.
2. The third corner rest point, xTT, is stable if and only if u > (b — c) /2.
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3. The rest point xg, which lies on the boundary where ALLD is absent, is stable if and only if 1 > 1.
4. The rest point, x1, lying strictly in the interior of Ay, is stable if and only if i > 0.

Furthermore, if the fixed point xg exists, any solution starting from the set {(x,1 —x,0)|0<x <1}
asymptotically converges to xg (the set includes x =1 if u > 0, otherwise not). In addition, at =0, the
interior fixed point x| acts as a centre for periodic orbits in Aj.

First, the proposition claims that rest points corresponding to homogeneous populations of
ALLC and ALLD are not stable. We show that introducing TFT in small amounts to an ALLD
population destabilizes it. Similarly, introducing ALLD destabilizes an ALLC population. When
< (b —¢)/2,ahomogeneous TFT population is also not stable since a small introduction of ALLC
grows. However, if mutations are too frequent, i > (b — c)/2, a homogeneous TFT population is
stable. Second, the proposition claims that the value of  determines the stability of the ALLC-
TFT coexistence. This coexistence is stable when p1 < u < (b — ¢)/2. When p < 1, this coexistence
is not stable; a small introduction of ALLD into this mixed population grows. Finally, the
proposition claims that the three types—ALLC, TFT and ALLD—can stably coexist, if conditions
allow for such a coexistence in the first place and the mutation rate is positive (thatis, 0 < u < p1).
At =0, this coexistence acts as a centre for periodic orbits. We also show that any population
containing ALLC but no ALLD asymptotically reaches this ALLC-TFT coexistence. This also
implies that this coexistence is always stable to perturbations that do not involve ALLD.

Corollary A.3. The strategy ALLC attains maximal frequency at a stable coexistence when p = 1.

Proposition A.4 (Extinction of ALLD from any mixed population when . is sufficiently
high). If n > pq, any solution (x(t), y(t), z(t)) of (D 1) with (x(0), y(0),z(0)) € A such that z(0) € [0, 1)
has limy_, o0 z(t) = 0.

This proposition claims that the dynamics (D 1) eliminates ALLD from any starting population
that has ALLD and other strategies (either TFT, ALLC or both), provided the mutation rate, u is
at least u1.
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